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A B S T R A C T   

DNA-binding and RNA-binding proteins are essential to an organism’s normal life cycle. These proteins have 
diverse functions in various biological processes. DNA-binding proteins are crucial for DNA replication, tran-
scription, repair, packaging, and gene expression. Likewise, RNA-binding proteins are essential for the post- 
transcriptional control of RNAs and RNA metabolism. Identifying DNA- and RNA-binding residue is essential 
for biological research and understanding the pathogenesis of many diseases. However, most DNA-binding and 
RNA-binding proteins still need to be discovered. This research explored various properties of the protein se-
quences, such as amino acid composition type, Position-Specific Scoring Matrix (PSSM) values of amino acids, 
Hidden Markov model (HMM) profiles, physiochemical properties, structural properties, torsion angles, and 
disorder regions. We utilized a sliding window technique to extract more information from a target residue’s 
neighbors. We proposed an optimized Light Gradient Boosting Machine (LightGBM) method, named DRBpred, to 
predict DNA-binding and RNA-binding residues from the protein sequence. DRBpred shows an improvement of 
112.00 %, 33.33 %, and 6.49 % for the DNA-binding test set compared to the state-of-the-art method. It shows an 
improvement of 112.50 %, 16.67 %, and 7.46 % for the RNA-binding test set regarding Sensitivity, Mathews 
Correlation Coefficient (MCC), and AUC metric.   

1. Introduction 

Protein-DNA and protein-RNA interactions are important in various 
biological processes. This includes DNA replication and repair, gene 
regulation, transcription, post-transcriptional control of RNAs and RNA 
metabolism, and other DNA-related and RNA-related biological activ-
ities [1–4]. Understanding how and why proteins interact with DNA and 
RNA requires the identification of DNA-binding and RNA-binding pro-
teins. Many experimental techniques, such as nuclear magnetic reso-
nance, X-ray crystallography, and chromatin immunoprecipitation on 
microarrays, can identify DNA-binding and RNA-binding proteins [5]. 
However, the experimental techniques to determine DNA-binding and 
RNA-binding proteins are time-consuming and labor-intensive [6]. 
Given the limitations of wet experiments for determining DNA-binding 
and RNA-binding proteins, computational methods for identifying pu-
tative DNA-binding and RNA-binding proteins have become increas-
ingly important in recent years. Recent breakthroughs in genomic and 
proteomic techniques have recently generated numerous DNA-binding 
and RNA-binding protein sequences [7]. For example, in 2014, there 

were more than ten times as many DNA-binding proteins in the UniProt 
database as in 2000 [8]. These massive amounts of data lay the 
groundwork for research into computational approaches for identifying 
DNA-binding and RNA-binding proteins. 

In the existing literature, many recent methods [9,10] rely not just on 
the protein sequence but also on the protein’s experimentally derived or 
predicted 3D structure. However, the number of experimentally derived 
structures (DNA and RNA complexes) is limited. Addressing this gap, our 
work introduces DRBpred, a novel approach for predicting DNA-binding 
and RNA-binding residues using only protein sequences. We studied 
several properties of protein sequences, including amino acid composi-
tion, evolutionary profiles (PSSM and HMM values of amino acids), 
physicochemical properties, structural properties, torsion angles, and 
disorder values. We ranked the features to determine which features 
contribute most to our trained model. We employed a recursive feature 
elimination (RFE) technique combined with SHAP (Shapley Additive 
exPlanations) values to select a subset of important features. The sliding 
window technique was used to obtain as much information as possible 
about the target and context residues. The features were concatenated to 
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achieve superior predictive performance. In addition, an optimized 
LightGBM (Light Gradient Boosting Machine) classifier-based predictor 
was trained as the machine-learning method for the classification task. 
We found that the proposed method outperformed the existing 
state-of-the-art methods. Finally, we used Local Interpretable 
Model-Agnostic Explanations (LIME) to explain the trained model and 
analyze the effects of features. 

2. Related work 

Several methods have been proposed in the literature to identify 
DNA-binding and RNA-binding sites in proteins. The three types of 
features used in these prediction methods are sequence, structure, and 
evolutionary. Using evolutionary features was hard to compute due to 
the lack of computing power. The structural and sequence-based fea-
tures were mostly used for prediction. Ahmad et al. utilized only 
sequence features to predict protein-DNA-binding [9]. Cai and Lin 
employed the SVM algorithm to predict DNA-binding proteins, utilizing 
a protein’s amino acid composition, hydrophobicity, and 
solvent-accessible surface area correlations as input features [11]. In 
more recent work, Zou et al. introduced a sequence-based protocol that 
integrates informative features from different scales to train an SVM 
model for the prediction of DNA-binding proteins [12]. The random 
forest (RF) algorithm, which is a useful machine learning classifier, was 
also used to predict DNA-binding proteins. Lou et al. applied the RF 
algorithm for the prediction of DNA-binding proteins, with predicted 
relative solvent accessibility, predicted secondary structure, and 
position-specific scoring matrix serving as the primary sequence features 
[13]. Zhang et al. proposed DNA-Prot, a predictor for DNA-binding 
proteins. It employs an SVM classifier and a comprehensive set of fea-
tures categorized into six groups: primary sequence-based, evolutionary 
profile-based, predicted relative solvent accessibility-based, predicted 
secondary structure-based, physicochemical property-based, and bio-
logical function-based features [14]. In addition, Yan et al. presented the 
DRNApred tool [15] that can distinguish between DNA-binding and 
RNA-binding residues and proteins. It employs a collection of features 
extracted from a diverse set of sources of sequence-derived information 
extracted from a dataset with both DNA-binding and RNA-binding 
proteins. This information contains amino acid types, amino acid 
physicochemical properties, evolutionary profiles, potential intrinsic 
disorder, secondary structure, and solvent accessibility. DRNApred 
lowers cross predictions and predicts potentially higher-quality false 
positives near-native binding residues. Moreover, Seungwoo et al. 
introduced DP-Bind, a method for predicting DNA-binding sites in a 
DNA-binding protein based on the protein’s amino acid sequence. 
DP-Bind implements three machine learning methods: support vector 
machine (DP-Bind(SVN)), kernel logistic regression (DP-Bind (klr)), and 
penalized logistic regression(DP-Bind (plr)) [16]. In DP-Bind, pre-
dictions can be made using either the input sequence alone or an 
autonomously created profile of the input sequence’s evolutionary 
conservation in the form of a PSI-BLAST position-specific scoring matrix 
(PSSM). Wang et al. proposed the BindN + method, which employs two 
SVM models to predict RNA-binding and DNA-binding sites; each model 
performs better on its respective type of proteins [17]. 

Several studies have indicated the significance of evolutionary fea-
tures in the detection of DNA-binding proteins [18–20]. Methods lacking 
these evolutionary features tend to exhibit lower accuracy, often 
resulting in classifier bias due to imbalanced sample numbers. Thus, the 
inclusion of evolutionary information to predict DNA-binding residues 
can improve accuracy. Computing power has increased dramatically in 
the last decade, which makes it much easier to compute evolutionary 
features, which are often time-consuming. Position-Specific Scoring 
Matrix (PSSM) is used to represent evolutionary features. They are 
usually calculated in one of two ways: (a) Concatenation methods that 
encode the residues by concatenating PSSM scores in a sliding window 
(b) Combination methods, which encode residues by combining PSSM 

scores with other physiochemical properties such as hydrophobicity, 
molecular mass, torsion angles, and other frequency profiles in a sliding 
window. Zhou et al. [21] introduce a residue-encoding technique called 
Position Specific Score Matrix Relation Transformation (PSSM-RT), 
which encodes residues by considering their evolutionary relationships. 
Deng et al. proposed the PDRLGB method that predicts binding residues 
in protein-DNA complexes using a light gradient-boosting machine 
(LightGBM) [9]. The author used an incremental feature selection with 
the random forest algorithm to find the best subset of features and 
trained a light gradient boosting machine. However, their method is 
dependent not only on the protein sequence but also on the experi-
mentally derived 3D structure of the protein. They extracted structural 
features from the three-dimensional protein structure using the DSSP 
[22]. Zhang et al. [23] proposed the StackPDB method for predicting 
DNA-binding Proteins. The StackPDB method extracts pseudo amino 
acid composition (PseAAC), pseudo-position-specific scoring matrix 
(PsePSSM), position-specific scoring matrix-transition probability 
composition (PSSM-TPC), evolutionary distance transformation (EDT), 
and residue probing transformation (RPT) features from protein se-
quences. The authors selected a subset of the features using extreme 
gradient boosting-recursive feature elimination (XGB-RFE) and 
employed a stacked ensemble classifier consisting of XGBoost, 
LightGBM, and SVM for DNA-binding protein prediction. Ali et al. 
introduce DP-BINDER, a computational method for identifying DBPs 
based on physicochemical and evolutionary information. It involves 
extracting key features from protein sequences using normalized 
Moreau-Broto autocorrelation (NMBAC), position-specific scoring 
matrix-transition probability composition (PSSM-TPC), and pseudo 
position-specific scoring matrix (PsePSSM). These features are refined 
using support vector machine recursive feature elimination and corre-
lation bias reduction (SVM-RFE + CBR) and analyzed using random 
forest (RF) and support vector machine (SVM). DP-BINDER demon-
strated an accuracy of 92.46 % with the jackknife method. 

Many research works also apply deep learning methods to predict the 
DNA-binding and RNA-binding Residues. Hendrix et al. [24] con-
structed and evaluated a deep-learning model to estimate the likelihood 
that a voxel on the protein surface is a DNA-binding site. Based on three 
distinct evaluation datasets, the results indicate that the model beats a 
number of earlier methods on two widely used datasets. In Ref. [25]the 
authors presented EL LSTM, an approach for DNA-binding residue pre-
diction that consists of two main components: Long Short-Term Memory 
(LSTM) and an ensemble learning-based classifier. LSTM uses a bi-gram 
model to learn pairwise relationships between residues before learning 
feature vectors for all residues. Then, an ensemble learning-based clas-
sifier is developed to address the data imbalance problem in binding 
residue predictions. To achieve balanced samples, they used a variant of 
the bagging strategy in ensemble learning. Despite the existence of 
numerous methods, the classification score remains low, indicating 
room for improvement. Additionally, some of these methods rely on the 
three-dimensional structure of proteins. Certain methods only offer 
protein-level predictions rather than residue-level predictions. This 
motivates us to explore this problem further and develop a 
machine-learning method capable of accurately predicting DNA-binding 
and RNA-binding residues. 

3. Proposed method 

This section formally discusses the data collection methods, feature 
extraction, machine learning methods, feature selection, and perfor-
mance evaluation metrics for predicting DNA-binding and RNA-binding 
residues. 

3.1. Dataset 

Throughout this study, we used the processed dataset that was used 
in Ref. [15]. In Fig. 1, we summarized the steps the authors in Ref. [15] 
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had used to prepare the dataset. The original dataset was collected from 
564 protein–DNA, 72 protein–RNA, and 16 protein–DNA–RNA 
high-resolution (better than 2.5) complexes PDB. Then, an extra 892 
DNA-binding and 145 RNA-binding chains with the previous dataset 
were added, yielding 2827 DNA-binding and 1125 RNA-binding chains. 

Next, the dataset is clustered to select proteins that share ≥80 % 
sequence similarity and ≥0.5 TM scores. Annotations were moved be-
tween proteins in the same cluster [15]. All chains’ DNA-binding and 
RNA-binding residues are transferred in the same cluster into a repre-
sentative chain with the largest number of binding residues. To reduce 
the sequence similarity between training and test datasets, the test 
proteins are filtered by removing every sequence that shares >30 % 
sequence similarity with any training sequence based on pairwise 
sequence similarity [15]. Finally, the long proteins from the training and 
test datasets were removed because of the existing predictors of DNA- 
and RNA-binding residues that could not complete predictions for pro-
teins that are over 1000 residues long [15]. A version of the test dataset 
was also created without transferring annotations of binding residues. 
Table 1 summarizes the number of proteins, RNA-binding, and 
DNA-binding residue annotations. 

3.2. Feature extraction 

We extracted a variety of features to represent proteins. We 
encompassed important properties such as sequence information, pre-
dicted structural details, and evolutionary information. These features 
offer relevant insights into the characteristics of the residues. Previous 
studies in the literature have indicated that information concerning the 
correct folding of a protein is embedded within its amino acid sequence 
and the disorder contents [26]. Furthermore, details pertaining to the 
binding affinity of proteins are encoded within the evolutionary infor-
mation, along with other structural and physicochemical properties 
[27–30]. Consequently, these features were integrated with the evolu-
tionary attributes to enhance prediction accuracy. 

We collected a total of 119 features using various feature encoding 

techniques, as depicted in Fig. 2. Utilizing different feature-encoding 
techniques, the subsequent section briefly describes the collected 
features. 

3.2.1. Physiochemical properties 
The physiochemical characteristics of a protein are the inherent 

properties of its constituent amino acids. Previous research studies [31, 
32] have shown the influence amino acid physiochemical properties 
have on the activity of transcription factors and how they regulate their 
interactions with other proteins. In this study, we have extracted seven 
concise numerical patterns from the work of [31] to represent key as-
pects of amino acid properties. The include polarity, secondary structure 
propensity, molecular volume, codon diversity, and electrostatic charge. 
These patterns serve as features to capture the distinctive attributes of 
each amino acid. 

3.2.2. Residue properties 
We represented each of the 20 standard amino acid (AA) types with a 

unique feature to effectively capture the amino acid composition of in-
dividual residues within a protein sequence. Previous research studies 
[33–35] have highlighted the significance of this feature in addressing 
bioinformatics problems. We encoded terminal residues, specifically 
those five residues located from the N and C termini. The values ranged 
from − 1.0 to − 0.2 and + 0.2 to +1.0, creating a distinctive feature for 
each residue [33]. 

3.2.3. Evolutionary properties 
As demonstrated in previous research, the evolutionary profile is a 

crucial factor in post-translational modifications (PTM). This includes 
DNA-binding and RNA-binding activity [27–30]. In our study, we ac-
quired the evolutionary profile of the protein sequence through a 
normalized position-specific scoring matrix (PSSM) obtained from 
BLAST (PSI-BLAST) [36]. This PSSM is represented with a 20-dimen-
sional matrix, capturing evolutionary patterns in multiple alignments 
and storing scores for each position in the alignment. High scores indi-
cate highly conserved positions, while scores near zero or negative 
values indicate weakly conserved positions. We extended the PSSM 
scores to calculate monogram (MG) and bi-gram (BG) features. MG and 
BG features can be used to describe a segment of a protein sequence that 
exhibits conservation in terms of transition probabilities from one amino 
acid to another [37]. We extracted 1-dimensional MG features and 
20-dimensional BG features from the DisPredict2 program and incor-
porated them into our analysis. We calculated the close neighbor cor-
relation coefficient based on the PSSM scores. We obtained 30 Hidden 
Markov Model (HMM) profile-based evolutionary features for the pro-
tein sequence. To identify distantly related sequences, profile Hidden 
Markov Models (HMMs) transform a multiple sequence alignment into a 
specialized scoring system tailored for searching databases [38]. 
Numerous studies have emphasized the importance of evolutionary 
features in characterizing protein properties [27–30,39,40]. Methods 
that do not consider evolutionary features typically exhibit lower ac-
curacy. The classifier can be biased due to imbalanced sample numbers. 
Therefore, the inclusion of evolutionary information in predicting 
DNA-binding and RNA-binding residues can enhance accuracy. 

3.2.4. Structural properties 
Local structural characteristics, such as the predicted secondary 

structure (SS) and accessible surface area (ASA) of amino acids, have 
been widely employed in addressing various biological challenges, 
including DNA- and RNA-binding residue prediction. In our study, we 
utilized the Dispredict2 [35] and SPOT-Disorder2 [41] programs to 
acquire predicted ASA values and SS probabilities for helix (H), coil (C), 
and beta-sheet (E) at the individual residue level. Additionally, we ob-
tained a separate set of SS probabilities for E, C, and E at the residue level 
from the Dispredict2 and SPOT-Disorder2 programs. 

Fig. 1. Illustrates the steps of creating the Training and Test datasets. The 
dataset was created with both benchmark datasets and data collected from the 
Protein Data Bank (PDB). 

Table 1 
The number of DNA- and RNA-binding residues in the Training and Test Dataset.  

Dataset No. of 
proteins 

No. of Non- 
binding residues 

No. of DNA- 
binding residues 

No. of RNA- 
binding residues 

Training 488 95161 7823 (7.6 %) 4699 (4.6 %) 
Test 82 17925 968 (5.1 % 808 .2 %)  
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3.2.5. Flexibility properties 
Protein molecules exhibit varying levels of flexibility within their 3D 

structures, often expressed as fluctuations in the Cartesian coordinates 
of the protein backbone and defined by two torsion angles Φ and Ψ. The 
fluctuations in backbone torsion angles have proven valuable in devel-
oping several computational methods [40,41]. We acquired two features 
related to backbone angle fluctuations, specifically dphi (ΔΦ) and dpsi 
(ΔΨ), using the Dispredict2 and SPOT-Disorder2 programs [35,41]. 
Previous research has established that intrinsically disordered regions 
(IDRs) contain post-translational modification (PTM) site-sorting signals 
and play a crucial role in regulating protein structures and functions, i. 
e., DNA- and RNA-binding proteins [42–44]. In our study, we repre-
sented each amino acid in a protein with a disorder probability obtained 
from a disorder predictor. We also included Molecular Recognition 
Features (MoRFs). These are short, interaction-prone segments of pro-
tein disorder that transition from disorder to order upon specific bind-
ing, representing a specific class of intrinsically disordered regions with 
molecular recognition and binding functions. 

3.2.6. Energy profile 
A method for estimating the position-specific estimated energy 

(PSEE) of amino acid residues solely based on sequence information was 
developed by Iqbal et al. [35]. The authors incorporate the contact en-
ergy and predict relative solvent accessibility (RSA) to determine the 
PSEE. Their work showcased how PSEE can effectively distinguish be-
tween structured and unstructured regions within a protein, including 
intrinsically disordered regions. Additionally, PSEE can be employed to 
identify functional binding regions within a protein. We incorporated 
the PSEE score per amino acid as a feature in our study. 

3.3. Machine learning algorithms 

In this study, we have explored the following seven Machine 
Learning Methods.  

⁃ K-nearest Neighbors Classifier (KNN): KNN learns from the K number 
of training samples in the feature space that are the closest distance 
to the target point. The classification decision is based on the 
neighbors’ majority votes. K was set to 5 as a default value, and all 
neighbors were equally weighted [45].  

⁃ Random Forest Classifier (RF): Random forest [46] is a supervised 
learning algorithm that employs ensemble learning techniques for 
classification tasks. It is a meta-estimator that aggregates many de-
cision trees (bagging). The random forest creates trees in parallel, 
and these trees have no interaction. At the training time, the algo-
rithm creates a large number of decision trees and outputs the 
average prediction of the individual trees.  

⁃ Logistic Regression (LG): Logistic regression [47] is a statistical 
method employed in binary classification tasks to model the proba-
bility of a particular outcome based on the relationships with inde-
pendent variables. It calculates the estimated probability of a 
categorical dependent variable’s relationship with one or more in-
dependent variables.  

⁃ Extra Tree Classifier (ET): Extra Tree (ET), or extremely randomized 
tree, is an ensemble machine learning method [48]. The Extra Tree 
Classifier method improves predictive accuracy and controls 
over-fitting by averaging by fitting several randomized decision trees 
from the original learning sample. 

⁃ Support Vector Machine (SVM): The Support Vector Machine clas-
sifier determines how much error in the model is acceptable and 
selects a line or hyperplane that best fits the data [49]. We optimized 
the epsilon and cost parameter C using a Bayesian optimization 
algorithm.  

⁃ Light Gradient Boosting Machine (LGBM): Light GBM is a learning 
algorithm that uses a tree-based approach [50]. The algorithm grows 
the tree vertically and selects a leaf based on the loss. The gradient 
boosting framework is used in this project. LGBM is a quick algo-
rithm with a small memory footprint that can handle large datasets.  

⁃ Categorical Gradient Boosting Classifier (CAT): CatBoost handles 
categorical features and outperforms existing publicly available 
gradient boosting implementations in terms of quality [51]. On en-
sembles of similar size, the library has a GPU implementation of the 
learning algorithm and a CPU implementation of the scoring algo-
rithm, making it significantly faster than other gradient-boosting 
libraries. 

3.4. Feature selection 

The feature selection process can be considered a method of selecting 
a subset of variables from a large feature set and assessing their 

Fig. 2. Illustration of encoding the protein residues into a feature vector of 119 features utilizing various feature encoding techniques. The feature vector includes 
amino acid composition type, evolutionary features, physicochemical, structural properties, torsion angles, and disorder probabilities. 
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accuracy. It is used for various reasons, including simplifying models to 
make them easier for researchers to interpret, reducing training times, 
avoiding the dimensionality curse, and improving data compatibility 
with a learning model class. 

To identify which features are important, we have used SHAP 
(Shapley Additive exPlanations) importance scores [52]. SHAP is a 
state-of-the-art method used in machine learning to interpret the output 
of complex machine learning models. These scores are based on game 
theory, specifically the concept of Shapley values, which were devel-
oped to allocate the payout of a cooperative game fairly to its players 
based on their individual contributions [52]. SHAP importance scores 
provide a detailed and fair explanation of how each feature in a dataset 
influences the prediction of a machine learning model, enhancing 
transparency and interpretability in complex models. Figs. 3 and 4 show 
the SHAP importance scores for the DNA and RNA datasets. We found 
that the most important feature in both datasets is the Accessible Surface 
Area. A larger Accessible Surface Area likely provides more binding 
space with DNA and RNA. AA index, Monogram and Bigram, and HMM 
profile are some of the other features that contribute to the prediction of 
the proposed method. 

When applying a feature selection technique, the fundamental 
assumption is that the dataset includes features that might be redundant 
or irrelevantand can be safely eliminated without substantial loss of 
information. Features that are not relevant or only partially relevant 
have the potential to affect the performance of a model; hence, feature 
selection becomes a crucial step in the model creation process. We have 
used a Recursive Feature Elimination technique (RFE) that allows you to 
reduce the number of features in the dataset while maintaining the 
model’s predictive power. It removes the features with the lowest 
importance based on the SHAP importance scores. Recursive Feature 
Elimination offers several benefits, including the utilization of tree- 
based or linear models to detect the complex relations between fea-
tures and the target. RFE can be implemented with SHAP importance 
scores, one of the most reliable ways to estimate the importance of 
features. Unlike many other techniques, it works with missing values 
and categorical variables. It also provides a list of features that should 
not be eliminated, e.g., in the case of prior knowledge. After using the 
Recursive Feature Elimination method, a total of 96 features out of 119 
features are selected for both the DNA and RNA datasets. Figs. 5 and 6 
show the selected features for each (DNA and RNA) dataset. 

3.5. Performance evaluation metrics 

In our study, the dataset is highly imbalanced, so we need to choose 
the evaluation metrics carefully. We have selected AUC, Recall, and 

MCC to evaluate our method. Area Under the “Receiver Characteristic 
Operator Curve” (AUC) is a widely used metric to find the performance 
of the machine learning method. AUC is not threshold-dependent, 
making it a robust metric to evaluate the model performance. We 
chose the Recall and MCC metrics because they are also used for 
imbalanced datasets, and existing methods use them for comparison. 
The following section shows the formula to calculate the recall and MCC. 

Recall
/

Sensitivity =
TP

TP + FN  

MCC=
TP × TN − FN × FP

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)

√

Where TP is the number of correctly predicted binding residues (true 
positives) 

TN is the number of correctly predicted non-binding residues (true 
negatives) 

FP is the number of incorrectly predicted non-binding residues (false 
positives) 

FN is the number of incorrectly predicted binding residues (false 
negatives) 

4. Results 

In this section, we first discuss the performance of Machine learning 
methods and then optimizing window size and hyperparameters. 
Finally, we compare the performance of DRBpred with the existing state- 
of-the-art methods. 

4.1. Performance of machine learning methods on the training dataset 

As discussed before, we have selected seven machine learning 
methods to find the best method suitable for this problem. Figs. 7 and 8 
show the 10-fold cross-validation results for the DNA and RNA datasets, 
respectively. The Light Gradient Boosting Machine performs better for 
each dataset than the other methods in terms of AUC, Recall, and MCC, 
so we selected this method for the rest of the experiments. 

Additionally, to assess the robustness and consistency of our model, 
we conducted a 5-fold cross-validation on the training dataset in terms 
of AUCROC. This approach is crucial to understand the model’s per-
formance variability between the training and testing phases. In cross- 
validation, the dataset is divided into five equal parts. In each fold, a 
different part of the dataset is held out for testing while the remaining 
four parts are used for training. This process is repeated five times, each 

Fig. 3. Importance scores from SHAP (Shapley Additive exPlanations) for DNA-binding proteins. The Accessible Surface Area feature holds the highest feature 
importance score, followed by AA index. The evolutionary-based features, Monogram and Bigram, calculated from PSSM scores, have the third highest impor-
tance scores. 
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time with a different part being used as the test set, ensuring a 
comprehensive evaluation. Figs. 9 and 10 display the Receiver Oper-
ating Characteristic-Area Under Curve (ROC-AUC) for the DNA and RNA 

training and test sets. The ROC-AUC metric is a reliable indicator of the 
model’s ability to distinguish between classes, with a value closer to 1 
indicating higher accuracy. For our model, the training ROC-AUC score 

Fig. 4. SHAP (Shapley Additive exPlanations) Importance scores for RNA-binding proteins. Similar to DNA-binding proteins, the Accessible Surface Area feature 
possesses the highest feature importance score, succeeded by the AA index. Following these, the evolutionary-based features Monogram and Bigram, derived from 
PSSM scores, rank as the third most significant in terms of importance scores. 

Fig. 5. Illustration of the number of selected features for the DNA dataset. The orange bar represents the selected features, and the blue bar represents the total 
number of features. The lower number of features are selected from PSSM and HMM profiles as they both represent the evolutionary features. 

Fig. 6. Illustration of the number of selected features for the RNA dataset. The orange bar represents the selected features, and the blue bar represents the total 
number of features. The lower number of features are selected from PSSM and physical properties. 
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is notably high, approximately 0.91, which is a strong indication of the 
model’s effectiveness in the training phase. Furthermore, this high score 
is consistent across all five folds, as indicated by the low variation in 
performance. This consistency is important as it implies that the model is 
not overly fitted to a specific part of the training data and can generalize 
well across the entire dataset. On the other hand, while the performance 
on the test set shows a decrease compared to the training set, it still 
yields good results. This decrease is a common observation, as models 
tend to perform slightly worse on unseen data. However, the fact that 
the model still shows good results on the test sets suggests that while 
there is a drop in performance, the model maintains a significant degree 
of its predictive power when applied to new, unseen data, which is a 
critical aspect of model reliability and usefulness in practical 
applications. 

4.2. Optimizing hyperparameters 

Machine learning method performance highly depends on the 
selected hyperparameter. To improve the results of our method, we 
optimized the hyperparameter of the Light Gradient Boosting Machine. 
The parameters (n_estimators, learning_rate, num_leaves, max_depth, 
min_child_samples, max_bin, subsample, subsample_freq, and colsam-
ple_bytree) of LightGBM are optimized using a hyperparameter opti-
mization framework (Optuna) [53]. The framework used a 
Tree-structured Parzen Estimator algorithm to optimize the hyper-
parameters. Table 2 shows the selected hyperparameters for both DNA 
and RNA datasets. 

4.3. Selection of best window size 

The residues/amino acids are interconnected within proteins. This 
means each residue’s characteristics are influenced by its adjacent res-
idues.That motivates us to represent residues not only with their own 
features but also the neighboring residue’s features. We collected 96 

Fig. 7. 10-fold cross-validation results on the DNA Training dataset on different 
Machine learning methods. The Light Gradient Boosted Machine outperforms 
all the other methods in terms of AUC, MCC, and Sensitivity metrics. (CAT: 
Categorical Gradient Boosting Classifier, ET: Extra Tree Classifier, KNN: K- 
nearest Neighbors Classifier, LG: Logistic Regression, LGBM: Light Gradient 
Boosted Machine, RF: Random Forest Classifier, SVM: Support Vector Machine). 

Fig. 8. 10-fold cross-validation results on the RNA Training dataset on different 
Machine learning methods. The Light Gradient Boosted Machine outperforms 
all the other methods in terms of AUC, MCC, and Sensitivity metrics. (CAT: 
Categorical Gradient Boosting Classifier, ET: Extra Tree Classifier, KNN: K- 
nearest Neighbors Classifier, LG: Logistic Regression, LGBM: Light Gradient 
Boosted Machine, RF: Random Forest Classifier, SVM: Support Vector Machine). 

Fig. 9. The ROC-AUC curve for the DNA training and test dataset. The training 
ROC-AUC score is approximately 0.90 for five folds and shows low variation in 
performance. For unseen test set the ROC-AUC score is 0.82. 

Fig. 10. The performance on the RNA training and test datasets is depicted by 
the ROC-AUC curve. The training phase achieves a consistent ROC-AUC score of 
around 0.91 across all five folds, indicating stable performance. On the unseen 
test set, the ROC-AUC score reaches 0.72. 
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features to represent each residue/amino acid. Fig. 11 shows that the 
residues glycine(G) can be represented by concatenating the features 
from two of its neighbor’s residues, lysine(K) and leucine(L). For win-
dow size 3, the length of the glycine(G) residue feature vector is 96 × 3 
= 288 features. As the feature dimensions increase with the window size 
increase, we investigate the optimal window size for each model. 

We investigated window sizes from 1 to 19 to find the optimal size 
for both DNA and RNA models. For the DNA dataset, Figs. 12 and 13 
show that the optimal window size is 11 for the DNA and RNA models. 

4.4. Performance on the test dataset 

The model’s performance is assessed by conducting an evaluation on 
the test dataset. The performance of DRBpred is presented in Table 3, 
where various metrics such as Sensitivity, Specificity, Balanced Accu-
racy (BACC), Matthews Correlation Coefficient (MCC), Accuracy (ACC), 
False Positive Rate (FPR), False Negative Rate (FNR), Precision, F1- 
score, and Receiver Operating Characteristic Area Under the Curve 
(ROCAUC) are reported. The results indicate that DRBPred exhibits 
strong performance, particularly excelling in terms of BACC, ACC, and 
ROCAUC. 

4.5. Comparison with existing methods 

We performed a comparative evaluation of our method against 
recent state-of-the-art methods, namely DRNApred, Pprint, RNABindR, 
and BindN+. The results of these state-of-the-art methods were gathered 
from the DRNApred paper. The performance of the RNA model is 
detailed in Table 4 and Fig. 14. Our proposed method has an improve-
ment of 112.50 %, 16.67 %, and 7.46 % in terms of Sensitivity, MCC, and 
AUC compared with the best method DRNApred. 

Similarly, we tested our method for DNA-binding prediction. Table 5 
and Fig. 15 show the performance of the DNA model. Our proposed 
method has improved by 112.00 %, 33.33 %, and 6.49 % in Sensitivity, 
MCC, and AUC compared with the best method, DRNApred. 

We plotted the Receiver Operating Characteristic Area Under the 
Curve (ROC-AUC) analysis in Figs. 16 and 17. The ROC-AUC curve is a 

graphical representation of the model’s ability to discriminate between 
positive and negative samples, where a larger area under the curve in-
dicates better performance. These curves were constructed using data 
obtained from the findings presented in the paper [15], as some existing 
methods were not publicly available. Figs. 16 and 17 provide clear ev-
idence that the DRBpred method surpasses the performance of currently 
established state-of-the-art techniques. 

5. Case study 

We conducted LIME analysis [54] on the independent test samples. 
LIME, an acronym for Local Interpretable Model-Agnostic Explanations, 
is used to approximate local, interpretable models that can explain in-
dividual predictions for black-box machine learning models [54]. For 
machine learning models, it is crucial for models to be explainable to 
gain the trust of users. LIME allows users to understand what happens 
within these black-box machine-learning models and aids in the iden-
tification of possible concerns, including issues related to information 
leakage, model bias, robustness, and causality [52,54]. LIME introduces 
perturbations to the original data points, inputs them into the black-box 
model, and observes the resulting outputs [54]. The method then assigns 
weights to these new data points based on their proximity to the original 
point. Subsequently, it creates a surrogate model on the dataset, incor-
porating these weighted variations [54]. This surrogate model is then 

Table 2 
Selected best parameters LightGBM for DNA and RNA datasets. The parameters 
are selected with a Tree-structured Parzen Estimator algorithm.  

Parameter Name DNA RNA 

n_estimators 1000 1000 
learning_rate 0.151 0.159 
num_leaves 7 10 
max_depth 3 4 
min_child_samples 95 89 
max_bin 102 118 
subsample 0.72 0.83 
subsample_freq 1 1 
colsample_bytree 0.93 0.95  

Fig. 11. Illustration of sliding window technique to incorporate neighbor res-
idues information. After feature selection, each residue is represented by 96 
features. For sliding window size 3, the residues glycine(G) can be represented 
by concatenating the features from two of its neighbor’s residues, lysine(K) and 
leucine(L), and the feature vector length is 96x3 = 288 features. 

Fig. 12. Selection of sliding window size for DNA dataset. To maximize the 
objective function (Sensitivy + MCC), the model performance for window sizes 
1–19 has been evaluated. The model performs best for window size 11. 

Fig. 13. Selection of sliding window size for RNA dataset. To maximize the 
objective function (Sensitivy + MCC), the model performance for window sizes 
1–19 has been evaluated. The model performs best for window size 11. 
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used to explain each original data point individually. 
We randomly selected two amino acids for DNA-binding and RNA- 

binding predictive models from the test dataset for LIME analysis. 
Fig. 18 provides insights into the top five features influencing the pre-
diction of Valine (V) as a DNA-binding residue for protein 3POV0. The 
predicted probability for the DNA-binding class is 0.91, whereas the non 
DNA-binding class has a probability of 0.09. The model correctly pre-
dicts the label for this test sample. Notably, the feature importance 

scores for this particular sample reveal that the HMM profile (L) has a 5 
% importance score, followed by Bigram (R) with 4 %, Accessible Sur-
face Area with 3 %, and HMM profile (E) also has a 3 % importance score 
toward the DNA-binding class. On the other hand, the Secondary 
Structure (P(8-T)) has a 3 % importance score toward the non DNA- 
binding class. 

Fig. 18(b) and (d) visualize the range of local interpretability pre-
dictions for the Valine (V) sample. They indicate that the HMM profile 
(L) for this specific instance exceeds 5658, the Accessible Surface Area is 
greater than 0.5, Bigram (R) falls within the range of 0.52–1.54, and the 
HMM profile (L) falls within the range of 4805–6758, contributing to the 

Table 3 
Classification scores for DNA and RNA model.  

Datasets Sensitivity Specificity BACC MCC ACC FPR FNR Precision F1-score ROCAUC 

DNA 52.58 89.53 71.06 0.28 87.64 0.11 0.47 21.33 0.30 82.00 
RNA 34.03 88.82 61.43 0.14 86.47 0.11 0.66 11.98 0.18 72.36  

Table 4 
Performance comparison of DRBpred with existing methods in the RNA Test 
dataset. DRBpred method shows promising results compared to the existing 
methods.  

Methods Sensitivity MCC AUC 

DRNApred 0.16 0.12 0.67 
Pprint 0.15 0.11 0.66 
RNABindR 0.14 0.10 0.73 
BindN+ 0.12 0.08 0.67 
DRBpred 0.34 0.14 0.72 
(Imp%) 112.50 % 16.67 % 7.46 % 

The best score values are bold-faced. (Imp%) shows improvement compared to 
the best method (DRNApred). 

Fig. 14. Performance comparison of DRBpred with existing methods in the 
RNA Test dataset. The red bar shows the performance of the DRBpred method 
in terms of AUC, MCC, and sensitivity metrics. 

Table 5 
Performance comparison of DRBpred with existing methods in the DNA Test 
dataset. DRBpred performs better compared to the existing methods.  

Methods Sensitivity MCC AUC 

DRNApred 0.25 0.21 0.77 
BindN+ 0.22 0.18 0.79 
DP-Bind(svm) 0.24 0.20 0.75 
DP-Bind(klr) 0.24 0.20 0.76 
DP-Bind(plr) 0.22 0.18 0.74 
DBS-PSSM 0.21 0.17 0.77 
DRBpred 0.53 0.28 0.82 
(Imp%) 112.00 % 33.33 % 6.49 % 

The best score values are bold-faced. (Imp%) shows improvement compared to 
the best method (DRNApred). 

Fig. 15. Performance comparison of DRBpred with existing methods in the 
DNA Test dataset. The red bar shows the performance of the DRBpred method 
in terms of AUC, MCC, and sensitivity metrics. 

Fig. 16. The ROC-AUC curve for the DNA test dataset. DRBpred achieves an 
AUC of 0.72, is represented by the blue color. Among the evaluated methods, 
the second-best performance is demonstrated by DRNApred, with an AUC score 
of 0.77. DRBpred surpasses the performance of the currently established state- 
of-the-art methods, indicating its superior accuracy in classifying DNA- 
binding proteins. 
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DNA-binding class. It is extremely difficult to relate these features to the 
prediction of DNA-binding model. However, one feature importance 
score aligns with our hypothesis. Residues tend to exhibit DNA-binding 
tendencies when they possess a higher accessible surface area. In this 
instance, the Accessible Surface Area is greater than 0.5, contributing to 
this sample being identified as a DNA-binding residue. Furthermore, 
during our analysis of feature importance scores, we observed that the 
Accessible Surface Area is the most crucial feature in our trained model 
for both DNA and RNA datasets. 

We further investigated the contribution of features for RNA-binding 
protein prediction. Fig. 19 provides insights into the top five features 
influencing the Serine (S) prediction at position 261 as an RNA-binding 

residue for protein 3ZH22. The predicted label for this instance is non 
RNA-binding with a probability of 0.99. The true label is non RNA- 
binding. Notably, the feature importance scores for this particular 
sample reveal that HMM profile (E) has a less than 1 % importance score, 
followed by Bigram (V), Bigram (F), and Bigram (P), all with less than 1 
%. In contrast, the Accessible Surface Area is less than 0.11 for this 
particular sample and contributed to the non RNA-binding prediction. 
These feature importance scores align with our hypothesis that residues 
exhibit non RNA-binding tendencies when they possess a lower acces-
sible surface area. 

6. Conclusions 

In this study, we developed a new method, DRBpred, to predict DNA- 
binding and RNA-binding residues from protein sequences. This method 
involves gathering relevant features and employing a recursive feature 
elimination (RFE) technique along with SHAP values to select a subset of 
features. Additionally, a sliding window technique was utilized to 
extract additional information from neighboring residues, and an opti-
mized LightGBM classifier was trained to predict the binding residues. 
DRBpred demonstrated significant improvements across various evalu-
ation metrics compared to the state-of-the-art method. Specifically, for 
the DNA-binding test dataset, DRBpred exhibited enhancements of 
112.00 % in sensitivity, 33.33 % in Matthews’s correlation coefficient 
(MCC), and 6.49 % in the area under the curve (AUC). Similarly, im-
provements of 112.50 % in sensitivity, 16.67 % in MCC, and 7.46 % in 
AUC were observed for the RNA-binding test dataset. These results 
clearly indicate that the optimized LightGBM method surpasses the 
performance of the existing state-of-the-art approach. The limitation of 
the proposed approach is that feature extraction is computationally 
expensive. DRBpred depends on other existing methods for feature 
extraction, some of which are time intensive. To mitigate this, we plan to 
employ parallel processing strategies involving multiple CPUs in future 
developments. Additionally, we aim to incorporate three-dimensional 
predicted structural information in the future. Moreover, large lan-
guage models (LLMs) could be employed to extract important features, 

Fig. 17. The ROC-AUC curve for the RNA test dataset. DRBpred achieves an 
AUC of 0.82, which is shown by the blue color. DRBpred outperforms the 
performance of the state-of-the-art methods, demonstrating effectiveness in the 
classification of RNA-binding proteins. 

Fig. 18. The figure illustrates the features influencing the prediction of the amino acid valine (V) as a DNA-binding residue in protein ID 3POV0. (a) Displays the 
prediction probabilities of the model for DNA-binding (orange) and non-DNA-binding (blue) classes. (b) Highlights the top five significant features. (c) the top five 
features and their corresponding values. (d) same as figure (b) and shows each feature’s contribution to the prediction of the selected amino acid, with their relative 
importance denoted by floating-point numbers on the x-axis. Features contributing to DNA-binding are shown in green, and those contributing to non DNA-binding 
in red. 
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potentially improving prediction accuracy. We believe that the DRBpred 
method will assist researchers in predicting DNA- and RNA-binding 
residues, enabling a better understanding of the roles played by DNA- 
and RNA-binding proteins in the life cycle of organisms. 

Data Availability 

The DRBpred webserver is available at https://bmll.cs.uno.edu. The 
data, including the code related to the development of DRBpred can be 
found here https://github.com/wasicse/DRBpred. 

CRediT authorship contribution statement 

Md Wasi Ul Kabir: Data curation, Formal analysis, Methodology, 
Software, Validation, Writing – original draft, Writing – review & edit-
ing. Duaa Mohammad Alawad: Data curation, Software, Writing – 
original draft, Writing – review & editing. Pujan Pokhrel: Conceptu-
alization, Data curation, Methodology, Writing – original draft, Writing 
– review & editing. Md Tamjidul Hoque: Conceptualization, Funding 
acquisition, Investigation, Project administration, Resources, Supervi-
sion, Validation, Visualization, Writing – original draft, Writing – review 
& editing. 

Declaration of competing interest 

There is no conflict of interest with any of the authors or the sug-
gested reviewers (if any). 

Acknowledgments 

The authors would like to thank Christopher David Moore for thor-
ough review of the manuscript. The research reported in the paper was 
partially supported by an Institutional Development Award (IDeA) from 
the National Institute of General Medical Sciences of the National In-
stitutes of Health under grant number P2O GM103424-21. 

References 

[1] J. Zhou, et al., EL_PSSM-RT: DNA-Binding Residue Prediction by Integrating 
Ensemble Learning with PSSM Relation Transformation, vol. 18, 2017. 

[2] X. Dai, S. Zhang, K. Zaleta-Rivera, RNA: interactions drive functionalities, Mol. 
Biol. Rep. 47 (2) (2020) 1413–1434. 

[3] D.D. Licatalosi, Roles of RNA-binding proteins and post-transcriptional regulation 
in Driving male germ cell development in the mouse, Adv. Exp. Med. Biol. 907 
(2016) 123–151. 

[4] F. Cozzolino, et al., Protein-DNA/RNA interactions: an overview of investigation 
methods in the -omics era, J. Proteome Res. 20 (6) (2021) 3018–3030. 

[5] C.M. Kobras, A.K. Fenton, S.K. Sheppard, Next-generation microbiology: from 
comparative genomics to gene function, Genome Biol. 22 (1) (2021) 123. 

[6] K. Li, et al., Prediction of hot spots in protein-DNA binding interfaces based on 
supervised isometric feature mapping and extreme gradient boosting, BMC Bioinf. 
21 (Suppl 13) (2020) 381. 

[7] M. Mesri, Advances in proteomic technologies and its contribution to the field of 
cancer, Advances in medicine 2014 (2014), 238045-238045. 

[8] B. Faezov, R.L. Dunbrack Jr., PDBrenum: a webserver and program providing 
Protein Data Bank files renumbered according to their UniProt sequences, PLoS 
One 16 (7) (2021) e0253411. 

[9] L. Deng, et al., PDRLGB: precise DNA-binding residue prediction using a light 
gradient boosting machine, BMC Bioinf. 19 (Suppl 19) (2018) 522. 

[10] Q. Yuan, et al., AlphaFold2-aware protein–DNA binding site prediction using graph 
transformer, Briefings Bioinf. 23 (2) (2022) bbab564. 

[11] Y.D. Cai, S.L. Lin, Support vector machines for predicting rRNA-, RNA-, and DNA- 
binding proteins from amino acid sequence, Biochim. Biophys. Acta 1648 (1–2) 
(2003) 127–133. 

[12] C. Zou, J. Gong, H. Li, An improved sequence based prediction protocol for DNA- 
binding proteins using SVM and comprehensive feature analysis, BMC Bioinf. 14 
(1) (2013) 90. 

[13] W. Lou, et al., Sequence based prediction of DNA-binding proteins based on hybrid 
feature selection using random forest and Gaussian naive Bayes, PLoS One 9 (1) 
(2014) e86703. 

[14] Y. Zhang, et al., newDNA-Prot: prediction of DNA-binding proteins by employing 
support vector machine and a comprehensive sequence representation, Comput. 
Biol. Chem. 52 (2014) 51–59. 

[15] J. Yan, L. Kurgan, DRNApred, fast sequence-based method that accurately predicts 
and discriminates DNA-and RNA-binding residues, Nucleic acids research 45 (10) 
(2017) e84-e84. 

[16] S. Hwang, Z. Gou, I.B. Kuznetsov, Dp-Bind, A web server for sequence-based 
prediction of DNA-binding residues in DNA-binding proteins, Bioinformatics 23 (5) 
(2007) 634–636. 

[17] L. Wang, et al., BindN+ for accurate prediction of DNA and RNA-binding residues 
from protein sequence features, BMC Syst. Biol. 4 (2010) 1–9. 

Fig. 19. The key features influencing the identification of Serine (S) in protein 3ZH22 as an RNA-binding residue. (a) Showcases the model’s predictive probabilities: 
RNA-binding in orange and non-RNA-binding in blue. (b) Displays the five most crucial features. (c) Shows the top five features with their values. (d) Illustrates each 
feature’s role in predicting the specific amino acid, with their significance quantified by floating-point values on the x-axis. Features contributing to RNA-binding are 
shown in green and those contributing to non-RNA binding in red. 

M.W.U. Kabir et al.                                                                                                                                                                                                                            

https://bmll.cs.uno.edu
https://github.com/wasicse/DRBpred
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref1
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref1
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref2
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref2
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref3
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref3
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref3
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref4
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref4
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref5
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref5
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref6
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref6
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref6
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref7
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref7
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref8
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref8
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref8
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref9
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref9
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref10
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref10
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref11
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref11
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref11
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref12
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref12
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref12
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref13
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref13
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref13
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref14
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref14
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref14
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref15
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref15
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref15
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref16
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref16
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref16
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref17
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref17


Computers in Biology and Medicine 170 (2024) 108081

12

[18] L. Wang, S.J. Brown, BindN: a web-based tool for efficient prediction of DNA and 
RNA binding sites in amino acid sequences, Nucleic Acids Res. 34 (2006) 
W243–W248 (Web Server issue). 

[19] L. Wang, et al., BindN+ for accurate prediction of DNA and RNA-binding residues 
from protein sequence features, BMC Syst. Biol. 4 (Suppl 1) (2010) S3. Suppl 1. 

[20] S. Ahmad, A. Sarai, PSSM-based prediction of DNA binding sites in proteins, BMC 
Bioinf. 6 (1) (2005) 33. 

[21] J. Zhou, et al., EL_PSSM-RT: DNA-binding residue prediction by integrating 
ensemble learning with PSSM Relation Transformation, BMC Bioinf. 18 (1) (2017) 
379. 

[22] W. Kabsch, C. Sander, Dictionary of protein secondary structure: pattern 
recognition of hydrogen-bonded and geometrical features, Biopolymers 22 (12) 
(1983) 2577–2637. 

[23] Q. Zhang, et al., StackPDB: predicting DNA-binding proteins based on XGB-RFE 
feature optimization and stacked ensemble classifier, Appl. Soft Comput. 99 (2021) 
106921. 

[24] S.G. Hendrix, et al., DeepDISE: DNA binding site prediction using a deep learning 
method, Int. J. Mol. Sci. 22 (11) (2021) 5510. 

[25] J. Zhou, et al., EL_LSTM: prediction of DNA-binding residue from protein sequence 
by combining long short-term memory and ensemble learning, IEEE/ACM Trans 
Comput Biol Bioinform 17 (1) (2020) 124–135. 

[26] D.T. Jones, J.J. Ward, Prediction of disordered regions in proteins from position 
specific score matrices, Proteins 53 (Suppl 6) (2003) 573–578, 6. 

[27] X. Ma, et al., A SVM-Based Approach for Predicting DNA-Binding Residues in 
Proteins from Amino Acid Sequences, IEEE Xplore, 2009. 

[28] B. Liu, et al., Using amino acid physicochemical distance transformation for fast 
protein remote homology detection, PLoS One 7 (9) (2012) e46633. 

[29] H.L. Huang, et al., Predicting and analyzing DNA-binding domains using a 
systematic approach to identifying a set of informative physicochemical and 
biochemical properties, BMC Bioinf. (2011) S47. 

[30] B. Liu, et al., Using amino acid physicochemical distance transformation for fast 
protein remote homology detection, PLoS One 7 (2012). 

[31] L. Zhu, et al., Improving the accuracy of predicting disulfide connectivity by 
feature selection, J. Comput. Chem. 31 (7) (2010) 1478–1485. 

[32] S. Niu, et al., Prediction of tyrosine sulfation with mRMR feature selection and 
analysis, J. Proteome Res. 9 (12) (2010) 6490–6497. 

[33] S. Iqbal, A. Mishra, M.T. Hoque, Improved prediction of accessible surface area 
results in efficient energy function application, J. Theor. Biol. 380 (2015) 380–391. 

[34] S. Iqbal, M.T. Hoque, PBRpredict-Suite: a suite of models to predict peptide- 
recognition domain residues from protein sequence, Bioinformatics 34 (19) (2018) 
3289–3299. 

[35] S. Iqbal, M.T. Hoque, Estimation of position specific energy as a feature of protein 
residues from sequence alone for structural classification, PLoS One 11 (9) (2016) 
e0161452. 

[36] S.F. Altschul, et al., Basic local alignment search tool, J. Mol. Biol. 215 (1990) 
403–410. 

[37] A. Sharma, et al., Evaluation of sequence features from intrinsically disordered 
regions for the estimation of protein function, PLoS One 9 (2) (2014) e89890. 

[38] S.R. Eddy, Profile hidden Markov models, Bioinformatics 14 (9) (1998) 755–763. 
[39] A. Mishra, M.W.U. Kabir, M.T. Hoque, diSBPred: a machine learning based 

approach for disulfide bond prediction, Comput. Biol. Chem. 91 (2021) 107436. 
[40] M.W. Kabir, et al., TAFPred: torsion angle fluctuations prediction from protein 

sequences, Biology 12 (2023), https://doi.org/10.3390/biology12071020. 
[41] J. Hanson, et al., SPOT-Disorder2: improved protein intrinsic disorder prediction 

by ensembled deep learning, Dev. Reprod. Biol. 17 (6) (2019) 645–656. 
[42] P.E. Wright, H.J. Dyson, Intrinsically unstructured proteins: re-assessing the 

protein structure-function paradigm, J. Mol. Biol. 293 (2) (1999) 321–331. 
[43] J. Liu, H. Tan, B. Rost, Loopy proteins appear conserved in evolution, J. Mol. Biol. 

322 (1) (2002) 53–64. 
[44] P. Tompa, Intrinsically unstructured proteins, Trends Biochem. Sci. 27 (10) (2002) 

527–533. 
[45] S. Gattani, A. Mishra, M.T. Hoque, StackCBPred: a stacking based prediction of 

protein-carbohydrate binding sites from sequence, Carbohydr. Res. 486 (2019) 
107857. 

[46] E. Vigneau, et al., Random forests: a machine learning methodology to highlight 
the volatile organic compounds involved in olfactory perception, Food Quality 68 
(2018) 135–145. 

[47] P. Ranganathan, C.S. Pramesh, R. Aggarwal, Common pitfalls in statistical analysis: 
logistic regression, Perspect Clin Res 8 (3) (2017) 148–151. 

[48] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63 (1) 
(2006) 3–42. 

[49] D.M. Alawad, A. Mishra, M.T. Hoque, AIBH: accurate identification of brain 
hemorrhage using genetic algorithm based feature selection and stacking, Machine 
Learning Knowledge Extraction 2 (2) (2020) 56–77. 

[50] G. Ke, et al., Lightgbm: a highly efficient gradient boosting decision tree, Adv. 
Neural Inf. Process. Syst. 30 (2017). 

[51] A.V. Dorogush, V. Ershov, A. Gulin, CatBoost: Gradient Boosting with Categorical 
Features Support, 2018 arXiv preprint. 

[52] Lundberg, S. and S.-I. Lee, A unified approach to interpreting model predictions, in 
Proceedings of the 31st International Conference on Neural Information Processing 
Systems. p. 4768–4777. 

[53] T. Akiba, et al., Optuna: A Next-Generation Hyperparameter Optimization 
Framework, 2019 arXiv [cs.LG]. 

[54] M.T. Ribeiro, S. Singh, C. Guestrin, Why should I trust you?, in: Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining Association for Computing Machinery, San Francisco, California, USA, 
2016, pp. 1135–1144. 

M.W.U. Kabir et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0010-4825(24)00165-3/sref18
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref18
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref18
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref19
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref19
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref20
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref20
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref21
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref21
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref21
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref22
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref22
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref22
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref23
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref23
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref23
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref24
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref24
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref25
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref25
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref25
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref26
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref26
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref27
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref27
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref28
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref28
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref29
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref29
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref29
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref30
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref30
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref31
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref31
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref32
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref32
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref33
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref33
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref34
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref34
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref34
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref35
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref35
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref35
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref36
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref36
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref37
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref37
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref38
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref39
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref39
https://doi.org/10.3390/biology12071020
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref41
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref41
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref42
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref42
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref43
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref43
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref44
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref44
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref45
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref45
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref45
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref46
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref46
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref46
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref47
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref47
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref48
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref48
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref49
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref49
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref49
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref50
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref50
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref51
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref51
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref53
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref53
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref54
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref54
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref54
http://refhub.elsevier.com/S0010-4825(24)00165-3/sref54

	DRBpred: A sequence-based machine learning method to effectively predict DNA- and RNA-binding residues
	1 Introduction
	2 Related work
	3 Proposed method
	3.1 Dataset
	3.2 Feature extraction
	3.2.1 Physiochemical properties
	3.2.2 Residue properties
	3.2.3 Evolutionary properties
	3.2.4 Structural properties
	3.2.5 Flexibility properties
	3.2.6 Energy profile

	3.3 Machine learning algorithms
	3.4 Feature selection
	3.5 Performance evaluation metrics

	4 Results
	4.1 Performance of machine learning methods on the training dataset
	4.2 Optimizing hyperparameters
	4.3 Selection of best window size
	4.4 Performance on the test dataset
	4.5 Comparison with existing methods

	5 Case study
	6 Conclusions
	Data Availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


