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Abstract— Protein molecules differ in flexibility across their 

three-dimensional configurations. The phi (φ) and psi (ψ) torsion 

angles primarily define the protein backbone. The flexibility of 

proteins is related to the fluctuation of the torsion angle. The 

fluctuation of torsion angles is caused by the differences in 

backbone torsion angles between various NMR models. The angle 

fluctuations in the cartesian coordinate space are utilized to define 

the structural flexibility of proteins and help predict protein 

function and structure when the torsion angles are employed as 

constraints. This research attempts to develop a machine-learning 

method for directly predicting fluctuations in the torsion angle of 

protein sequences. We collect a number of helpful characteristics 

of proteins, including disorder probability, position-specific 

scoring matrix profiles, secondary structure probabilities, 

monograms, bigrams, position-specific estimated energy, half-

sphere exposures. Similarly, we explore well-known machine 

learning algorithms and present an optimized Light Gradient 

Boosting Machine Regressor (LightGBM) method, named 

TAFPred, to predict torsion angle variations using the selected 

features. The proposed method achieves ten-fold cross-validated 

correlation coefficients of 0.746 and 0.737, as well as mean absolute 

errors of 0.114 and 0.123, for the angle fluctuation of φ and ψ, 

respectively, and an improvement of 6.59% in MAE, 24.50% in 

PCC in the phi angle, and 6.09% in MAE, 21.84% in PCC in the 

psi angle, compared to the state-of-the-art method proposed by 

Zhang et al. 

Keywords— backbone torsion angle, torsion angle fluctuations, 

machine learning. 

I. INTRODUCTION  

Proteins are organic compounds composed of carbon, 
hydrogen, nitrogen, oxygen, and sulfur atoms [1]. A protein 
molecule is formed by coupling a central carbon atom with a 
side chain group, an amine group, a carbonyl group, and 
hydrogen atoms [2]. Proteins have diverse structures and 
functions that are vital for various cellular processes . They can 
be either structural, like actin and tubulin, which help shape the 
cell, or functional, like enzymes that facilitate crucial metabolic 
reactions. The tertiary structure of a protein refers to its three-
dimensional folding in space. The polypeptide chain may 
require the assistance of chaperone proteins to fold correctly 
after being synthesized at the ribosome [3, 4]. Chaperone 
proteins temporarily form hydrogen bonds with the polypeptide 
chain, facilitating proper folding and enabling the protein to 
function correctly. However, some protein molecules remain in 
a flexible state and do not fold to their native state. This protein 

structural flexibility is essential for dynamic and functional 
motions that enable interactions between proteins and peptides, 
DNA, RNA, or carbohydrates [5]. 

Protein structure can be illustrated by backbone torsion 
angles (Figure 1): rotational angles about the N-Cα bond (φ) 
and the Cα-C bond (ψ) or the angle between Cαi-1-Cαi-Cαi + 1 
(θ) and the rotational angle about the Cαi-Cαi + 1 bond (τ) [6]. 
Prediction of Cα atom-based angles has demonstrated their 
potential usefulness in model quality assessment and structure 
prediction [7, 8].  

 

 

Figure 1. Torsion angles phi (φ) and psi (ψ) 

Several methods have been developed to predict backbone 
torsion angles. Angle predictions have been shown to be useful 
in fold recognition [9, 10] and fragment-based [11] or fragment-
free structure prediction [12]. ANGLOR [13] utilizes support 
vector machines and neural networks for predicting the value 
of φ and ψ separately. TANGLE [14] uses a support vector 
regression method to predict backbone torsion angles (φ, ψ). Li 
et al. [15] predicted protein torsion angles by using four deep 
learning architectures, consisting of a deep neural network 



(DNN), a deep restricted Boltzmann machine (DRBN), and a 
deep recurrent neural network (DRNN), and a deep recurrent 
restricted Boltzmann machine (DReRBM). In addition, 
Heffernan et al. [7] captured the non-local interactions and 
yielded the highest reported accuracy in angle prediction by 
using long short-term memory bidirectional recurrent neural 
networks. A good prediction of angle probability may provide 
significant information on structural flexibility and intrinsic 
protein disorder in extreme scenarios [14]. Recently, Deep 
learning-based methods, i.e., AlphaFold [16], OmegaFold [17], 
and ESMFold [18], performed very well for the prediction of 3-
dimensional (3D) structure of proteins. However, these 
methods perform well only for structured proteins [16]. 
Conversely, the prediction of Phi and Psi angle fluctuations can 
be useful for unstructured/disordered protein structure 
prediction. 

However, to the best of our knowledge, only one research 
[19] presents work on backbone torsion angle fluctuation which 
is derived from the variation of backbone torsion angles. 
Because most proteins lack a known structure, the need for 
locating flexible (potentially functional) regions of a protein is 
the driving force behind the sequence-based prediction of 
torsion angle fluctuation. Moreover, using predicted torsion 
angles and flexibility as restraints can aid in protein structure 
and disordered region predictions. So, there is a dire need to 
improve the existing method to predict torsion angle 
fluctuations from protein sequences. The only method we found 
is developed by Zhang et al. [19]. They represented a neural 
network method for backbone torsion angle fluctuation based 
on sequence information only. Their model achieved ten-fold 
cross-validated correlation coefficients of 0.59 and 0.60 and 
mean absolute errors of 22.7° and 24.3° for the angle 
fluctuation of φ and ψ, respectively.  

In this work, we developed a machine learning method, 
TAFPred, to predict the backbone torsion angle fluctuation. The 
method directly extracts various features from protein 
sequences and employs a genetic algorithm-based feature 
selection process to extract relevant features from the protein 
sequence. Finally, an optimized Light Gradient Boosting 
Machine is trained to predict the backbone torsion angle 
fluctuation. To the best of our knowledge, this is the second 
approach to predict backbone torsion angle fluctuation based on 
protein sequences. We hope this method will be useful in 
advancing protein structure and disorder prediction. 

II. MATERIALS AND METHODS 

This section describes the dataset, feature extraction method, 
performance evaluation metrics, and feature selection, and 
finally, it describes the selected method for training the model. 
Figure 2 shows the workflow of the proposed TAFPred method. 

A. Dataset 

We obtained 1268 protein chains from the Zhang et al. [20], 
which were selected from precompiled CulledPDB lists by 
PISCES using a sequence identity threshold of 25%. The 
corresponding structures of these proteins are identified using 
the Nuclear Magnetic Resonance (NMR) method. After 
removing chains with less than 5 NMR models, smaller than 25 
amino acids, and consisting of nonstandard amino acid types, 

we selected 997 protein chains [19]. Subsequently, we obtained 
936 protein chains (here and after referred as NMR936) [20] by 
removing chains for which features could not be obtained. The 
variation of backbone torsion angles from different NMR 
models was used to derive the backbone torsion angle 
fluctuation. 

B. Feature extraction 

We extracted several relevant profiles from protein 
sequences, i.e., the Residue profile, Conservation profile, 
Physiochemical profile, Structural profile, and Flexibility 
profile. Here we briefly describe each of these profiles. 

Residue profile  

In order to represent the 20 standard amino acid types (AA), 
twenty distinct numerical values are utilized, resulting in one 
feature for each amino acid. The significance of this feature in 
addressing bioinformatics issues has been established in earlier 
investigations [21-23]. 

 

 

 
Figure 2: Illustrates the workflow of the torsion angle fluctuation predictions. 

Physiochemical profile  

We employ five concise numerical patterns from [24] to 
represent various properties of each amino acid. These patterns 
correspond to polarity, secondary structure, molecular volume, 
codon diversity, and electrostatic charge. 

Conservation profile 

The normalized position-specific scoring matrix (PSSM) 
obtained from the DisPredict2 program [22] is utilized in this 
study to determine the conservation profile of the protein 
sequence. The PSSM has L × 20 dimensions, where high scores 
indicate highly conserved locations and scores around zero or 
negative suggest less conserved positions. Further, we extract 



monogram (MG) and bi-gram (BG) features from the PSSM 
scores. These features can characterize the portion of a protein 
sequence that can be conserved within a fold regarding 
transition probabilities from one amino acid to another. In this 
study, we collect 1-D MG and 20-D BG features from the 
DisPredict2 tool. 

Structural profile 

Local structural features such as predicted secondary 
structure (SS) and accessible surface area (ASA) of amino acids 
have been utilized to address various biological problems [25]. 
In this study, predicted ASA and SS probabilities for helix (H), 
coil (C), and beta-sheet (E) at the residue level are obtained 
from the DisPredict2 program. Additionally, we gather a 
distinct set of SS probabilities for H, C, and E at the residue 
level from the BalancedSSP [25] program, as it provides an 
unbiased prediction of these SS types. Therefore, a total of 
seven structural properties, including one ASA per amino acid 
and six predicted SS probabilities, are extracted as a structural 
profile of protein sequences. 

Flexibility profile 

Earlier investigations have established that an intrinsically 
disordered region (IDR) plays a crucial role in regulating 
protein structures and functions, as it contains post-translational 
modification (PTM) sites and sorting signals [26-28]. This 
study uses the disorder probability as a feature, and the 
DisPredict2 [22] disorder predictor is employed to accurately 
predict the protein’s disordered regions. To enhance the feature 
quality, we obtain two predicted backbone angle fluctuations, 
dphi (ΔΦ) and dpsi (ΔΨ), from the DAVAR program [19]. 

Energy profile 

In a recent study by Iqbal and Hoque [22], a novel approach 
was introduced that employs contact energy and predicted 
relative solvent accessibility (RSA) to determine the position-
specific estimated energy (PSEE) of amino acid residues solely 
from sequence information. The authors demonstrated that the 
PSEE score could effectively differentiate between a protein’s 
structured and unstructured or intrinsically disordered regions. 
This study uses the PSEE score per amino acid as a feature since 
its ability to address various biological problems has been 
empirically established. 

C. Machine learning methods 

We analyzed the performance of eight individual regression 
methods: i) Light Gradient Boosting Machine Regressor 
(LightGBM) [29]; ii) Extreme Gradient Boosting Regressor 
(XGB) [30]; iii) Extra Tree Regressor (ET) [31]; iv) Decision 
Tree Regressor [32]; v) K-Nearest Neighbors Regressor [33, 
34]; vi) Convolutional Neural Network (CNN) [35]; and Long 
Short-Term Memory (LSTM) [36]; and Deep Neural Network 
(TabNet) [37]. The Light Gradient Boosting Machine 
Regressor (LightGBM) performs better, as shown in Tables 2 
and 3 under the Results Section. 

D. Feature Selection Using Genetic Algorithm (GA) 

During the process of feature extraction, we obtained a 
feature vector consisting of 179 dimensions using various tools. 
To reduce the feature dimension and improve the classification 

accuracy by selecting only the relevant features, we employed 
a Genetic Algorithm (GA), which is a type of evolutionary 
algorithm, for feature selection. A detailed description of the 
feature selection approaches is provided below. 

GA is a stochastic search method based on population that 
imitates the process of natural evolution. It consists of a 
population of chromosomes, where each chromosome 
represents a potential solution to the problem at hand. 
Typically, a GA begins by randomly initializing the population 
and subsequently updating it iteratively using various operators 
such as elitism, crossover, and mutation. This process 
prioritizes and recombines favorable building blocks in parent 
chromosomes to produce fitter solutions [38-40] .  

To set up the GA, it is crucial to encode the problem 
solution as chromosomes and calculate their fitness. The 
chromosome space’s length is equivalent to the feature space 
length. We ran a genetic algorithm (GA) for 2000 generations, 
using a population size of 200. The elite rate was set at 0.05, 
while the crossover rate and mutation rate were set at 0.9 and 
0.5 respectively. In each generation, we retained the elites (best 
chromosomes) to ensure their preservation during the crossover 
and mutation stages. To assess chromosome fitness, we 
employed the LightGBM algorithm [32]. We chose LightGBM 
for its quick execution time and reasonable performance 
compared to other machine learning classifiers. During feature 
selection, we set the values of various LightGBM parameters, 
including max_depth, eta, silent, objective, num_class, 
n_estimators, min_child_weight, subsample, 
scale_pos_weight, tree_method, and max_bin, to 6, 0.1, 1, 
‘multi:softprob’, 2, 100, 5, 0.9, 3, ‘hist' and 500, respectively, 
while leaving the remaining parameters at their default values. 
We determined the LightGBM parameter values mentioned 
above through a hit-and-trial approach. Our implementation 
defines objective fitness as: 

������ =  1 − ��
 + ��� (3) 

E. Performance evaluation 

The performances of all the machine learning methods have 
been examined using a 10-fold cross-validation approach with 
the evaluation metric shown in Table 1. We measure the 
performance of torsion angle fluctuation predictions by 
calculating the Pearson Correlation Coefficient (PCC) and 
Mean Absolute Error (MAE) with the following equations: 

TABLE 1: PERFORMANCE EVALUATION METRICS 

Pearson Correlation 
Coefficient (PCC) = 
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Mean Absolute Error (MAE) = 
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Here �� is the predicted torsion angle fluctuation, �� is the native torsion angle fluctuation for the i residue 
in the sequence, �̅ and �� are their corresponding sample means. 



III. RESULTS 

In this section, we show the performance of different 
machine learning methods compared to the proposed method.  

A. Comparison between different methods 

We experimented with eight different machine learning 
methods. The performance comparison of the individual 
regressors on the training dataset for phi angle fluctuation is 
shown in Table 2. Most of the methods perform better than the 
state-of-the-art method [19] except Decision Tree Regressor. 
Table 2 further shows that the LightGBM is the best-performing 
regressor among eight regressors implemented in our study in 
terms of mean absolute value (MAE) and Pearson correlation 
coefficient (PCC). Moreover, LightGBM improves phi angle 
fluctuation prediction by 6.59% and 24.50% in terms of MAE 
and PCC, respectively, compared to the existing method. 

TABLE 2: RESULTS FROM DIFFERENT MACHINE LEARNING METHODS (PHI 
ANGLE) 

Methods / Metric MAE PCC 
MAE (% 

imp.) 

PCC 
(% 

imp.) 

Average 
(% imp.) 

State-of-the-art method 

[19] 
0.126 0.598 - - - 

Extra Trees Regressor 0.122 0.741 3.57% 23.88% 13.73% 

XGB Regressor 0.123 0.727 2.67% 21.57% 12.12% 

KNN Regressor 0.129 0.681 -2.30% 13.89% 5.79% 

Decision Tree Regressor 0.167 0.527 -24.38% -11.84% -18.11% 

LSTM 0.125 0.678 1.13% 13.35% 7.24% 

CNN 0.166 0.608 -24.21% 1.68% -11.27% 

Tabnet 0.117 0.736 7.26% 23.09% 15.18% 

TAFPred 0.118 0.745 6.59% 24.50% 15.54% 

Best score values are boldfaced. Here, ‘imp.’ stands for improvement. The ‘% imp.’ represents the 
improvement in percentage achieved by TAFPred compared to the state-of-the-art method. Likewise, 
the ‘Average (% imp.)’ represents the average percentage improvement achieved by TAFPred for both 
MAE and PCC. Additionally, ‘(-)’ denotes that the % imp. or (Average % imp.) cannot be calculated. 

 

Table 3 shows the performance comparison of the 
individual regressors for psi angle fluctuations. We found that 
the LightGBM regressor performs the best compared to other 
methods. LightGBM attains an MAE of 0.127 and PCC of 
0.733. Moreover, The LightGBM Regressor improves psi angle 
fluctuation performance by 6.09% and 21.84% in terms of 
MAE and PCC, respectively, compared to the state-of-the-art 
method proposed by Zhang et al. 

TABLE 3: RESULTS FROM DIFFERENT MACHINE LEARNING METHODS (PSI 
ANGLE) 

Methods / Metric MAE PCC 
MAE 

(% imp.) 
PCC (% 

imp.) 
Average 
(% imp.) 

State-of-the-art method 

[19] 
0.135 0.602 - - - 

Extra Trees Regressor 0.131 0.729 2.77% 21.10% 11.94% 

XGB Regressor 0.132 0.715 2.22% 18.73% 10.48% 

KNN Regressor 0.139 0.670 -2.63% 11.24% 4.31% 

Decision Tree Regressor 0.179 0.511 -24.65% -15.11% -19.88% 

LSTM 0.132 0.665 2.29% 10.48% 6.38% 

CNN 0.144 0.702 -6.46% 16.61% 5.07% 

Tabnet 0.126 0.724 7.24% 20.28% 13.76% 

TAFPred 0.127 0.733 6.09% 21.84% 13.96% 

Best score values are boldfaced. Here, ‘imp.’ stands for improvement. The ‘% imp.’ represents the 
improvement in percentage achieved by TAFPred compared to the state-of-the-art method. Likewise, 
the ‘Average (% imp.)’ represents the average percentage improvement achieved by TAFPred for both 
MAE and PCC. Additionally, ‘(-)’ denotes that the % imp. or (Average % imp.) cannot be calculated. 

IV. CONCLUSIONS 

In this research, we examined eight different machine 
learning techniques, including the recently introduced Deep 
Neural Network (TabNet) [37] and discovered that the Light 
Gradient Boosting Machine Regressor (LightGBM) exhibited 
the best performance according to the MAE and PCC metrics. 
We employed advanced sampling and pruning algorithms for 
hyperparameter optimization, as well as a genetic algorithm for 
feature selection, to improve the LightGBM regressor. In 
addition, we utilized a custom objective function for 
optimization. Our proposed method, TAFPred, resulted in an 
average improvement of 15.54% and 13.96% for both metrics 
(MAE and PCC) on phi and psi angles, respectively, when 
compared to the state-of-the-art method [19]. In the future, it 
would be worthwhile to investigate how torsion angle 
fluctuation affects disordered proteins. We are confident that 
this developed method will assist researchers in protein 
structure and disorder prediction. 
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 The code and data related to the development of TAFPred 
can be found here: https://github.com/wasicse/TAFPred. 
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