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A Transformer-Based Regression Scheme for
Forecasting Significant Wave Heights in Oceans

Pujan Pokhrel, Elias Ioup, Julian Simeonov, Md Tamjidul Hoque , and Mahdi Abdelguerfi

Abstract—In this article, we present a novel approach for
forecasting significant wave heights in oceanic waters. We propose
an algorithm based on the WaveWatch III, differencing, and a
transformer neural network (Transformer). The data becomes sta-
tionary after first-order differencing, performed with the observed
significant wave height and the wave height forecasts obtained from
WaveWatch III. We perform a case study on a group of 92 buoys
using WaveWatch III hindcasts. The Transformer model then pro-
vides the statistical forecasts of the residuals. The Transformer-
based proposed framework obtains the root mean square error
of 0.231 m for two days ahead forecasting. Our proposed method
outperforms existing state-of-the-art machine learning and nu-
merical approaches for significant wave heights prediction. Our
results suggest that combining numerical and machine learning
approaches gives better performance than using either alone.

Index Terms—Data assimilation, forecasting, residual
correction, significant wave heights, Transformer.

I. INTRODUCTION

THERE has been a growing interest in understanding the
physics behind waves and their dynamics in weakly non-

linear media like hydrodynamics [1], optics [2], quantum me-
chanics [3], Bose–Einstein condensates [4], [5], and finance [6].
These media sometimes experience large waves, often known
as rogue waves, and are poorly understood in terms of their
formation and dynamics. So far, the main way of studying
these waves is through classical nonlinear equations [7] which
include the nonlinear Schrodinger equation [8], [9], Korteweg–
de Vries (kDV) equation [10], Kadomtsev–Petviashvili equa-
tion [11], Zakharov equation [12], and fully nonlinear potential
systems [13]. Extending these equations to macroscopic systems
is difficult because it is computationally time-intensive. In recent
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years, since point measurements over a long duration of time
are available for ocean waves through buoys, several efforts
have been made to understand wave dynamics in oceans. These
waves show analogy in other wave media [14] and, thus, help
elucidate the factors behind wave formation. Pokhrel et al. [15]
have used statistical machine learning (ML) methods to forecast
anomalous waves through binary predictions on whether the
wave is large or not. However, to study these anomalous waves, it
is important to understand the dynamics of the height distribution
of the waves via regression approaches.

This article focuses on the accurate prediction of ocean waves’
significant wave heights, which remains one of the most critical
outstanding classical physics problems [16]. While ocean waves
are used to study the analogies in various media, nowcasting and
forecasting of waves are also crucial for myriad other reasons,
including optimizing ship routes for efficient shipping, avoiding
disasters, aiding the aquaculture industry, safely conducting
military and amphibious operations by the Navy and Marine
Corps teams, etc. The other importance of wave prediction lies in
the efficient renewable energy generated from renewable energy
sources like solar, wind, tidal, wave, etc.

There are previous ML and statistical methods applied to fore-
cast significant wave heights [17]–[23]. While these methods
have provided substantial insights into the problem, accurate
prediction remains elusive. There also exist deterministic ap-
proaches for forecasting significant wave heights. These meth-
ods take nonlinear equations like nonlinear Schrodinger equa-
tion [24], [25], kDV equation [26], or Zakharov equation [27]
and then use a spectral method based on fast Fourier transform
(FFT) to perform deterministic forecasts on unidirectional wave
fields. The numerical methods must be reinitialized for various
geographical areas [28] with different conditions for forecasting.
However, ML methods are easily generalizable to various do-
mains [29] but are not competitive with the numerical methods
for forecasting significant wave heights. The performances of the
ML methods are reported on individual buoys [18]–[20], [29],
[30]. Since existing ML methods [18], [20], [30] are trained on
single buoys, their generalized performance on a group of buoys
is difficult to calculate.

Various studies have previously used deep learning methods
to forecast significant wave heights [31], [32]. Wei [33] used
an artificial neural network (ANN) to build an AI-based storm
forecasting system to show that with the sliding window size
equal to the forecast horizon, decent prediction accuracy can
be achieved. Pirhoshyaran and Snyder [31] used recurrent and
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sequence-to-sequence networks to show that recurrent structures
with deep networks have better prediction accuracy than shallow
networks. Moreover, the authors also introduced the concept
of “refined buoys” to indicate the buoys where the informa-
tion is available for more than 1000 instances. Furthermore,
Hu et al. [34] used XGBoost and long short-term memory
(LSTM) to obtain predictions with respect to WaveWatch III
(WWIII) at a fraction of the computational cost at Lake Erie.
Lou et al. [35] similarly proposed an LSTM-based network to
forecast ocean wave heights using wave heights, wind speed
and wind direction as input. A different line of study [36] used
the moth-flame optimizer to fine-tune the hyperparameters of a
neural network to obtain accurate short-term predictions.

Literature review suggests that ML methods have been pre-
viously used for data assimilation to obtain bias-corrected fore-
casts. Specifically, Deshmukh et al. [37] used a nested SWAN
model with WWIII to forecast the residuals of the numerical
predictions using ANNs for a wave rider buoy located off
Puducherry, India. The study explored significant wave heights
and dominant wave periods to show that numerical methods
combined with ANNs give sustained performance over a longer
forecast horizon. Londhe et al. [32] similarly used ANNs to
correct the numerical residuals from Indian National Centre
for Ocean Information Services. Likewise, Zhang et al. [38]
used Gaussian process regression to incrementally predict the
residuals of wave heights obtained from the SWAN model with
the ground observations. While the prediction error decreases
dramatically using residual correction as the forecast horizon
increases, none of the previous studies used external predictors
to improve wave forecasts [38]. Zhang et al. [38] showed that
the wave height used from hindcasts can be used to improve
prediction accuracy but they did not explore other variables
such as winds and currents. Similarly, Mooneyham et al. [39]
used a residual CNN-based network using spectral features from
the buoys and the wave hindcasts as input to perform data
assimilation for up to 24 h. However, they did not utilize other
environmental features or take latitude and longitude into ac-
count, and the size of their data set was limited (three buoys). To
alleviate the shortcomings of the previous methods, we propose
a novel methodology to forecast significant wave heights in
oceans. Taking the features from buoys, geographical location,
and Ifremer hindcasts [40], we train a Transformer model [41]
to forecast first-order differenced values of significant wave
heights. While we use buoy and wind features as previously
used in the literature, we have introduced other features from
hindcasts like currents, sea–air energy flux, and directional
spreading to predict significant wave heights.

The main contributions of this article are as follows.
1) We obtain highly accurate forecasts of significant wave

heights in oceanic waters, outperforming numerical and
ML approaches.

2) We use various features from buoys, wind/wave hindcasts,
and geographical location to improve wave forecasts.

3) We forecast significant wave heights after calculating
residuals from WWIII, which helps us obtain a physically
consistent model.

TABLE I
STATISTICAL PROPERTIES OF SIGNIFICANT WAVE HEIGHTS

Std refers to the standard deviation. The statistical properties of significant wave
heights are calculated over the years 2010–2016 for all 92 buoys.

The rest of the article is organized as follows. Section II
describes the problem formulation. Section III describes the ex-
perimental setup, i.e., WWIII model, data set properties, station-
arity, training procedure, evaluation metrics, and the proposed
architecture. Section IV shows the comparison of numerical
forecasts and hindcasts and the performance of the Transformer
model with state-of-the-art ML and numerical methods. Sec-
tion V discusses the performance of the proposed model in light
of the state-of-the-art approaches. Finally, Section VI concludes
this article.

II. PROBLEM FORMULATION

The modeling of significant wave height can be formulated
as in the following equation:

Hs[n+ k] = H̄s[n+ k] + f(x, n) (1)

where k , x , and n represent the forecast horizon, environment
variables, and temporal position at individual buoys, respec-
tively. Similarly, Hs [k ] and H̄s [k ] represent the observed and
predicted significant wave heights at step k , respectively. The
function f (x ,n) thus represents the residuals of the first deriva-
tive, which is then modeled by the Transformer using the buoy
data. Error-correcting problems in which the ML algorithms
predict the innovation (divergence from the true state) are easier
to solve, resulting in smaller ML models which require less
training data to train [42], [43].

In terms of FFT components, the significant wave height Hs

can be calculated as in the following equation:

Hs = 4
√
mo (2)

where mo represents the variance of the FFT spectrum and is
defined as in the following equation:

mo =

∫ ∞

−∞
S(f)df (3)

where f and S (f) refer to the frequency band and energy
spectral density at the given frequency band, respectively, and
after calculating the wave heights and several other bulk pa-
rameters, National Oceanic and Atmospheric Administration
(NOAA) buoys store them for future use, which is utilized in
this study [44].

The statistical properties of significant wave heights (Hs ) are
displayed in Table I.
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III. EXPERIMENTAL SETUP

A. WaveWatch III Model

The WWIII model obtained from Ifremer is implemented over
the gridded bathymetry for the whole globe [40], [45]. The global
grid system covers longitudes from 0◦ to 360◦ E and latitudes
from 77◦ S to 77◦ N with a resolution of 0.5◦ × 0.5◦. In WWIII,
the evolution of the wavefield is obtained by solving the spectral
wave balance equation by using the directional wave spectrum
resolved at the grid points across the wave number direction
bands, as in (5):

∂N

∂t
+

1

cosφ
∂

∂φ
φ̇Ncosθ +

∂

∂λ
λ̇N +

∂

∂k
k̇N +

∂

∂θ
θ̇gN =

S

σ
(4)

where t , σ, S , N , and R refer to time, intrinsic angular fre-
quency, sourcing term, action density, and radius of the earth,
respectively. The terms φ̇, λ̇, and θ̇ can be obtained using (6)–(8):

φ̇ =
cgcosθ + Uφ

R
(5)

λ̇ =
cgsinθ + Uλ

Rcosφ
(6)

θ̇g = θ̇ − cgtanφcosθ
R

(7)

k̇ = − ∂σ

∂d

∂d

∂s
− k

∂U

∂s
(8)

where cg , λ, φ, θ, k , U , and d refer to group speed of waves,
longitude, latitude, wave propagation direction, wave number,
wind speed, and depth, respectively. Uφ and Uλ refer to the
current components in φ and λ directions, respectively.

We use the following source terms in the WWIII model used in
this study: F90 NOGRB SCRIP SCRIPNC NC4 TRKNC DIST
MPI PR3 UQ FLX0 LN1 ST4 STAB0 NL1 BT4 DB1 MLIM
TR0 BS0 IC2 IS2 REF1 IG1 XX0 WNT2 WNX1 RWND CRT1
CRX1 TIDE O0 O1 O2 O2a O2b O2c O3 O4 O5 O6 O7. Other
parameters used can be obtained from Ifremer [45].

WWIII is a numerical model based on the spectral representa-
tion of the sea state, i.e., at the selected locations, the wave field is
decomposed into a spectrum, which defines the energy of many
wave components. The sum of the wave trains going in different
directions θ and with different frequencies f gives the whole sea
state at a given location. Equation (5) can be solved forward to
obtain a spectral representation of the ocean state. Afterward,
(3) can be used to calculate the variance of the spectra, and (2)
can be used to calculate the forecasted significant wave height.
The forecasted significant wave height and the current wave
height are then used in (1) to calculate the residuals. Finally, the
Transformer algorithm is used to model the residuals using the
environmental variables as features.

B. Transformers for Differential Equations

A Transformer is a deep learning method based on an
encoder–decoder architecture that uses a self-attention mech-
anism [41]. Each layer in the encoder consists of a self-atten

block and a feedforward network block. Both blocks implement
a residual connection and a layer normalization unit [46].

Each Transformer block can be represented as

yt+1 = yt +G(LN(yt), θt) (9)

where LN (.) is the layer normalization function and G(.) is
either a self-attention or feedforward layer [46]. yt and θt refer
to the output and features at position t , respectively. The itera-
tive updates can be interpreted as discretization of continuous
function transformations.
G(LN (yt ), θt ) can be represented as function F (yt , θt) for

simplicity.
Afterward, if we relax yt and θt to continuous functions y(t)

and θ(t), we can rewrite (9) as (10)

y(t+Δt) = y(t) + ΔtḞ (y(t), θ(t)) (10)

where Δt is the change of t, which is also called the step size.
We can adjust Δt using a limit so that we get the following
equation:

lim
Δt→0

y(t+Δt)− y(t)

Δt
= F (y(t), θ(t)). (11)

From (13), we can deduce that each Transformer block de-
scribes a first-order differential equation [46], [47]. Moreover,
based on the formulation of Transformer block in (9)–(11)
and the universal approximation theorem of neural networks
[48]–[51], complexity of the network can be increased to model
higher order differential equations, given enough training data
(e.g., increasing the number of encoder–decoder blocks, feed-
forward layers, hidden layers, etc.). Since f (x ,n) is a discrete
version of F (y(t), θ(t), the Transformer model can be used to
model the function f (x ,n) as in (1).

The Transformer architecture used in this article is illustrated
in Fig. 1.

Fig. 1 shows the Transformer model used in this study. The
model includes decoder and encoder blocks, with each con-
taining an embedding layer, multihead self-attention layer, and,
finally, feedforward layers in each block. The primary purpose of
the embedding layer is to obtain ann = 5 dimensional expanded
representation of the markers. A feedforward neural network is
used as the embedding layer. The input of the embedding layer is
m markers, and the output is an m × n vector. The output of the
embedding layer is then passed to the multihead attention layer.
The positional encoding of features allows the network to learn
various cycles in the data. Similarly, the attention mechanism
learns the correlation between the features at each step of the
sequence, filters out unnecessary information, and assigns higher
weights to the important features, thus allowing the network
to learn long-term dependencies and give better performance
for time-series data. Transformer networks are generally used
for natural language processing tasks in which sentences/words
are encoded using byte-pair encoding and then passed to the
input layer. However, since we have numerical features derived
from buoys, hindcast, and geographical coordinates, we do not
need to obtain byte-pair encoding. Therefore, we use Standard-
Scaler [52] to scale the features and pass them directly to the
input layer of the Transformer model.
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Fig. 1. Architecture of the Transformer network used in this article. Left side denotes encoder block and right side denotes decoder block.

The multihead attention layer used in this article is based
on the self-attention mechanism. The input of this layer is
the expanded representations of the inputs obtained from the
embedding layer. The self-attention mechanism then calculates
the attention score for all other expanded representations of
inputs. The attention score can be calculated as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (12)

where Q , K , V , and dk refer to the matrix of all the queries,
matrix of all the keys, matrix of all the values, and the key
dimension, respectively. In a multihead attention setting, the
Transformer model creates h independent linear representations
from queries, keys, and values. These h representations are
normalized and then passed to the linear projection layer to
obtain the final output from the encoder/decoder layer. The
term N in Fig. 1 shows that multiple encoder/decoder blocks
can be used to create a Transformer neural network (TNN).
However, we use a multihead attention layer with two heads in
each encoder/decoder layer for our setup. Similarly, the network
contains four layers with 200 neurons for each feedforward layer
in each encoder/decoder block. The dimensionality of input and
output is dmodel = 512 and the inner layer dimensionality is
dff = 2048.

C. Data Set

We use 92 NOAA buoys to compare various numerical meth-
ods. The predictions and WWIII forecasts for these buoys can
be obtained from Ifremer hindcast [40]. The data is obtained in
various formats like time-series, 30 min averaged, and spectral
data. To compare with the state-of-the-art ML methods, we use
a limited number of buoys, which contain the environmental
parameters used by other ML methods. The list of buoys is
provided in the Appendix section (Part D).

The features used in this study include the following.
1) Buoy features: The buoy features used in this study are

significant wave heights, mean wave period, dominant
wave periods, wave direction, kurtosis, and power spectral
density.

2) Geographical location: To quantify the geographical lo-
cation of the buoys, we use latitude and longitude as
variables.

3) Hindcast features: The hindcast features used in this study
include sea–air energy flux, U and V components of
currents, U and V components of winds, and directional
spreading.

D. Stationary Property of Data

Nonstationary data, by definition, is unpredictable and cannot
be modeled or forecasted [53]. The results that are obtained
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TABLE II
ADF AND KPSS STATISTICS ON THE BUOY WITH NOAA IDENTIFIER 41010

Stationarity of the series with first-order differencing performed with the data
from the years 2013, 2014, and 2015.

TABLE III
ADF AND KPSS STATISTICS ON THE BUOY WITH NOAA IDENTIFIER 51101

Stationarity of the series with first-order differencing performed with the data
from the years 2013, 2014, and 2015.

by fitting a model in nonstationary time series may be spuri-
ous and may indicate a relationship between variables where
none exists [53], [54]. To measure the stationary property of
the data, tests like augmented Dickey–Fuller (ADF) [55] and
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [56] have been
proposed.

ADF and KPSS complement each other’s strengths in de-
termining if a series is stationary by proving the existence or
absence of a unit root. A unit root denotes the stochastic trend
(random walk with a drift), which shows a systematic pattern that
is not predictable. Therefore, the rejection of the null hypothesis
of ADF by the data is an indication that the series has no unit
root. However, in the case of KPSS, rejecting the null hypothesis
means that the series has a unit root. KPSS and ADF tests are
performed on the data from the buoy with NOAA identifier
41010 after the first-order differencing. These two tests are also
performed on the buoy with NOAA identifier 51001. Both buoys
were selected randomly.

For 100 points, Table II shows that the data rejects the ADF
test but not the KPSS test. However, as the number of points
increases, the p-value for ADF of the data points goes down
from 0.3552 at 100 points to 9.72 × 10-15 at 5000 points. A
similar trend is exhibited by buoy 155, as shown in Table IV.

The p-values from Tables II and III show that as the number
of points increases, the stationary trend can be found through
both ADF and KPSS tests. From our test on two buoys (NOAA
identifiers 41010 and 51101), the minimum number of points
used should be around 500 for each buoy. Thus, the availability
of sufficient data at different times and geographical locations

TABLE IV
EVALUATION METRICS AND THEIR CALCULATIONS

In the preceding table, i , xi , x̄i , xm , x̄m , and N refer to
the position, measured value, predicted value, mean of
actual values, mean of predicted values, and the number
of elements, respectively.

should enable the algorithms to learn the trend and provide
meaningful and accurate forecasts.

E. Evaluation Metrics

To measure the performance of our model and to compare
the results with state-of-the-art numerical and ML methods, we
employ various metrics like mean square error (mse), root mean
square error (RMSE), mean absolute error (MAE), variance, R2

score, scatter index (SI), Pearson’s correlation coefficient (CC),
hanna and heinold indicator (HH), and bias. Note that RMSE,
bias, and MAE are measured in meters, and SI, R2 score, HH,
and CC are nondimensional. While we use MSE as the cost
function for optimizing the Transformer model, we use the other
metrics to compare with other methods. The metrics used are
displayed in Table IV.

F. Proposed Methodology

In this article, we propose a Transformer [41] based frame-
work to forecast the significant wave heights as displayed in (1).
We then use a sliding window of a size equal to the forecast
horizon. The features are then fed to the Transformer, where the
forecasting is performed. After the Transformer model performs
the forecasting, the predictions from WWIII are added to the
forecasted values to generate final predictions.

Fig. 2 shows the proposed methodology for forecasting sig-
nificant wave heights in oceanic waters. The features used in
this study are spectral density, kurtosis, latitude, and longitude.
First, the Transformer model is used to model the residuals
after first-order differencing. Afterward, the prediction of the
residuals from the Transformer model is fed to (1) to forecast
the significant wave heights.

Transformer architectures employ a self-attention mechanism
to learn relationships between the elements of a sequence [57]
which makes it suitable for our study. Self-attention is also
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Fig. 2. Proposed methodology. The figure shows the proposed framework for
forecasting wave heights.

invariant to permutations and changes in the number of in-
put points, allowing it to operate on irregular grids. The self-
attention mechanism, which captures long-term dependencies
in the data, motivates our study’s use of the Transformer model.

IV. RESULTS

In this section, Section IV-A and IV-B show the comparison
of the proposed framework with existing ML and numerical
methods, respectively.

A. Comparison of Numerical Forecasts and Hindcasts

Owing to the lack of the availability of long-term reforecast
data to train the ML models, we use the hindcasts from WWIII
as the proxy to numerical forecasts following the procedure
used by Mooneyham et al. [39]. The authors report that since
the WWIII hindcasts are driven using reanalysis winds, they
have higher prediction skill than operational models run without
ground-truth observations. The higher skilled proxy serves as a
comparatively difficult benchmark for ML algorithms leaving
little room for improvement.

First, we report the results from Bidlot [58] for the operational
forecasts of different forecast agencies. Note that the forecasts
are operational; so changes might be made to the files in real
time as errors are discovered, thus leaving different agencies
with different forecasts even if the setup might be the same.

1) Prediction Skill of Various Operational Forecasts: We
first investigate the prediction error of various weather agencies
for operational forecasts. The operational forecasts are collected
for the numerical forecasts at the overlapping buoys between
different forecast agencies. Then the results are accumulated
monthly and yearly by Bidlot et al. [58]. The results for the
year 2016 are displayed in Table V.

TABLE V
COMPARISON OF OPERATIONAL FORECASTS FOR HINDCASTING AND

48 H AHEAD FORECASTING

Prediction skill of operational forecasts from various weather agencies using
different WWIII settings. The operational forecasts were obtained by Bidlot et al.
[58] and stored for reference. Since the operational models change over time, the
specific configuration used is not available.

Since the report of Bidlot et al. [58] did not consider other
forecast horizons, we do not display them in this article.
The models compared are European center for medium-range
weather forecasts (ECMWF) [59], [60], Met Office (MO) [61],
Fleet Numerical Meteorology and Oceanography Centre (FN-
MOC) [62]–[64], Meteorological Service of Canada [65], [66],
National Centers for Environmental Prediction (NCEP) [67],
[68], Meteo France (MF) [69], [70], Deutscher Wetterdienst
(DWD) [71], Bureau of Meteorology (BoM) [59], [72]–[74],
Service Hydrographique et Oceanographique de la Marine
(SHOM) [75], Japan Meteorological Agency [76], and Korea
Meteorological Administration [77]. The reader is referred to
Bidlot et al. [59] for buoys information.

Table V shows that the prediction accuracy of the numerical
models does not decrease rapidly up to about 48 h ahead. The
highest difference is the FNMOC model with the RMSE of
0.339 m for nowcasting and 0.457 m for 48 h ahead of forecast-
ing. For the NCEP model-driven using climate forecast system
reanalysis (CFSR) winds [78], [79], the WWIII model has the
RMSE of 0.339 m for nowcasting and 0.408 m for 48 h ahead
forecasting. Note that the RMSE of the hindcast on the data
set is 0.356 m. The decreased RMSE of hindcast compared to
the operational forecasts suggests that hindcasts have relatively
higher skills than operational forecasts. However, there remains
room for correction of error.

2) Comparison Between Wavefields Obtained Using
WaveWatch III and Forecasts: Mooneyham et al. [39] have
previously used a spectral net-based setup to perform data
assimilation using WWIII hindcasts and a convolutional
residual network. The authors suggested that reanalysis driven
hindcasts have higher prediction skills than the operational
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Fig. 3. Comparison between wavefields obtained from the CFSR hindcasts (left) and the forecasts (right) obtained using the WWIII model without the forcing
applied for the forecast horizon.

forecasts driven using analysis fields, thus providing a difficult
benchmark to make improvements to WWIII predictions
using ML methods. However, to make reliable assumptions, we
perform experiments with a single grid coarse resolution WWIII
model to show that the wave fields persist up to 48 h, which is
the most extended forecast horizon for our experiment setup.

We first investigate the difference in forecast skills between
the hindcast wave fields and the forecast wave field obtained by
running the model forward in time without the wind forcing.
Then, we first spin up the WWIII model for 30 days for the fore-
cast. We use a coarse resolution global grid while the hindcast
data is obtained from a high-resolution multigrid WWIII run.
This choice is made due to the high computational complexity
of running the numerical model for high-resolution grids for a
longer period.

The global grid system covers longitudes from 0◦ to 360◦ E
and latitudes from 85◦ S to 85◦ N with a resolution of 1◦ × 1◦.
Time-stepping for the model occurs with a global time step of
30 min, with sub-steps in the fractional step integration suffi-
ciently small to ensure model stability and accuracy (specifically
450 s for spatial advection, 900 s for intraspectral propagation,
and a minimum dynamic source time step of 10 s). Similarly,
the frequency-direction space is discretized over the full circle
with 36 directions and 36 frequencies. The directional grid
has a constant spacing of 10◦, whereas the frequency grid is
logarithmically distributed with growfactor 1.1, starting from
f1 = 0.035 Hz and ending at f3 = 0.98 Hz. Three hourly analy-
sis fields from the CFSR wind archive [78], [79] and weekly ice
concentration from NCEP [80] are used to force the model.
The hindcast is driven by CFSR winds [78], [79], daily ice
concentration, and sea surface temperature from the passive
microwave radar fields. Since the ice concentration used in the
coarse resolution single grid forecasting setup is weekly instead
of daily as in the hindcast archive, some differences are expected.
The comparison between CFSR hindcast fields and the WWIII
model is displayed in Fig. 3.

From Fig. 3, we can see that while the forecast model used
overestimates the high-intensity wave fields in the Pacific Ocean,
wave height distribution from both CFSR hindcasts and the

Fig. 4. RMSE values of CNN, LSTM, and Transformer for different forecast
horizons using WaveWatch III hindcasts.

WWIII model used in this study for forecasting look similar.
The overestimation can be attributed to the low-resolution grids
and the weekly ice concentration fields used in this study. The
forecast wavefields are obtained from a single global grid of
coarse resolution of 1◦ × 1◦, while the hindcasts are obtained
using the multigrid WWIII setup with the global grid resolution
of 0.5◦ × 0.5◦. Moreover, we can see that the model slightly
underestimates the wave fields in the Antarctic ocean, attributing
to the weekly ice concentration fields.

B. Experiments With Features and Different Differencing
Schemes

In this subsection, we measure the effect of various features
and the differencing schemes to obtain the best settings for
ML correction of numerical wave heights. We first display the
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Fig. 5. Percentage improvements of CNN, LSTM, and Transformer for dif-
ferent forecast horizons using WaveWatch III hindcasts.

TABLE VI
COMPARISON OF TRANSFORMER NEURAL NETWORK WITH VARIOUS

FEATURE COMBINATIONS

Performance of the Transformer neural network with various feature combi-
nations. Bold represents the setup with the best performance. Note that no
differencing has been applied.

performance of the TNN with various features and select the
best combination in Table VI.

Table VI shows that for the setup with no differencing, the
performance of the TNN increases as we increase the number
of features. Previous studies can explain the increase in pre-
diction skill with deep neural networks, suggesting that they
automatically perform feature selection/extraction [81]. We,
thus, use all the features available for the subsequent predictions.
The final features contain buoy features (wave heights, power

TABLE VII
COMPARISON OF TRANSFORMER NEURAL NETWORK WITH VARIOUS

DIFFERENCING SCHEMES

Performance of the Transformer neural network with various dif-
ferencing schemes. Bold represents the setup with the best perfor-
mance.

spectral density, kurtosis, mean wave periods, dominant wave
periods, and wave direction), geographical features (latitude
and longitude), and other features derived from the hindcasts
(sea–air energy flux, U and V components of currents, U and
V components of winds, and directional spreading) [40].

After obtaining the best set of features, we now test var-
ious differencing schemes with the same set of features.
We perform first-order differencing by using the equation
Hs [n + k ]− H̄s [n + k ]. The second-order differencing is sub-
sequently performed by subtracting H̄s [n + k ]− H̄s [n] from
the first-order difference, i.e.,

(Hs[n+ k]− H̄s[n+ k])− (H̄s[n+ k]− H̄s[n])

= Hs[n+ k]− 2H̄s[n+ k] + H̄s[n]. (13)

The differencing scheme used to obtain second-order dif-
ference is known as variable step size differencing [82]. The
performance of the Transformer model with various differencing
schemes is displayed in Table VII.

Table VII shows the performance of the TNN with various
differencing features using all the available features. We do
not utilize the sliding window scheme while testing various
differencing orders. Since the first-order differenced system
obtains the best performance among all the differencing setups,
we choose the first-order setup for the rest of the experiments.

The Transformer model without differencing obtains an
RMSE of 0.241 m for 6 h ahead prediction and 0.487 m for 48 h
ahead prediction. Meanwhile, the first-order differenced scheme
obtains an RMSE of 0.172 m for 6 h ahead prediction and
0.249 m for 48 h ahead prediction. The difference in prediction
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Fig. 6. Wave height plots of WaveWatch III, Transformer network, and the ground-truth values for NOAA buoy 44014 for 3 and 6 h ahead forecast horizons.

Fig. 7. Wave height plots of WaveWatch III, Transformer network, and the ground-truth values for NOAA buoy 44014 for 9 and 12 h ahead forecast horizons.

Fig. 8. Wave height plots of WaveWatch III, Transformer network, and the
ground-truth values for NOAA buoy 44014 for 24 h ahead forecast horizon.

skill suggests that while the Transformer model without the
differencing underperforms the operational numerical methods
shown in Tables V–VII, it can still help correct wave parameters
from the numerical model since, unlike the traditional data
assimilation methods, it can easily take external predictors
into account.

C. Comparison With State-of-the-Art Machine
Learning Approaches

In this subsection, we compare the performance of the pro-
posed Transformer model with the state-of-the-art ML ap-
proaches for significant wave heights forecasting. Since Li
and Liu [29] perform the experiments on the data collected
from NOAA buoy 41002 (February 1–16), we perform the
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TABLE VIII
PERFORMANCE OF THE PROPOSED ALGORITHM WITH DIFFERENT MACHINE

LEARNING METHODS FOR SHORT-TERM FORECASTING

Bold indicates the best value. Likewise, U10, Hs , Ta Fv , Dmean, Wt , At , ω, Gst, and
Pd refer to wind speed, significant wave heights, average wave period, friction velocity,
wave direction, water temperature, air temperature, pressure, gust speed, and dew point,
respectively. Similarly, Buoy, Lat/Lon, and Hindcasts refer to buoy features
(wave heights, dominant wave periods, power spectral density, and kurtosis), geographical
features (latitude and longitude), and the features derived from hindcasts (sea–air energy
flux, U and V components of currents, U and V components of winds, and directional
spreading). The other state-of-the-art methods are only executed up to the time horizons
they were originally proposed.

experiments on the same data set. The other state-of-the-art
methods have only been executed up to the time horizons they
were originally proposed [29]. The comparative performance is
displayed in Table VIII. The methods compared with are those
of Duan et al. [20], Mafi et al. [30], and Liu [29]. Further, the
fuzzy-logic [83] and ARMAX [84] based methods proposed by
Ozger [23] are also included in the comparative analysis. The
Transformer model used in this subsection uses a sliding window
of size equal to the forecast horizon.

The proposed method with the Transformer model outper-
forms other methods with an SI of 0.062 m for 24 h ahead
prediction compared to 0.168 m for [29], and 0.748 m for
Mafi et al. [30].

D. Comparison With Other Deep Learning Approaches Using
Numerical Residuals

This subsection displays various deep learning approaches on
the numerical residuals. Following the previous literature on the
topic, we compare convolutional neural networks (CNNs) and
LSTMs with the proposed method. Note that previous studies
have already used CNN and LSTMs for significant wave height
forecasting [34], [35], [39]. All deep learning models used in this
subsection use sliding windows equal to the forecast horizon. In
the case of CNN, a Conv2D layer is used from PyTorch with

four hidden layers with 200 neurons each to make predictions.
The network afterward consists of four hidden layers with 200
neurons each. Similarly, for LSTMs, we use two bidirectional
LSTM layers and then use four hidden layers with 200 neurons
each afterward. All other parameters are kept constant. The
train:test:validation split is set to (0.6:0.3:0.1).

From Fig. 4, we can see that the RMSE of all deep learning
methods gradually increases as the forecast horizon increases.
Specifically, in the case of CNN, the RMSE values are 0.214,
0.241, 0.267, 0.281, 0.288, and 0.294 m for 6, 12, 24, 30, 26, and
48 h, respectively. Likewise, the LSTM model obtains RMSE
values of 0.187, 0.216, 0.243, 0.248, 0.256, and 0.259 m for 6, 12,
24, 30, 26, and 48 h, respectively. Finally, the Transformer model
obtains RMSE values of 0.176, 0.186, 0.219, 0.221, 0.226, and
0.231 m for 6, 12, 24, 30, 26, and 48 h, respectively.

Similarly, Fig. 5 shows that the percentage improvement on
the residuals from WWIII decreases for all models as the time
horizon increases. Specifically, CNN has the most negligible
percentage improvement over the other two methods with per-
centage improvements of 39.9%, 32.3%, 25.0%, 21.1%, 19.1%,
and 17.1% for 6, 12, 24, 30, 36, and 48 h, respectively. In the
case of the other two methods, LSTM and Transformer, which
use specialized structures to capture the temporal correlations,
the improvement persists for longer. However, the transformer
model outperforms the other models with percentage improve-
ments of 50.5%, 47.8%, 38.5%, 37.9%, 36.2%, and 35.1%
for 6, 12, 24, 30, 36, and 48 h, respectively. This is higher
than percentage improvements obtained from the LSTM model,
which are 47.5%, 39.3%, 21.7%, 30.3%, 28.1%, and 27.3% for
6, 12, 24, 30, 36, and 48 h, respectively.

The Transformer model employs a multihead attention layer
and encoder–decoder blocks to learn long-term dependencies in
the data [41], [57]. Figs. 4 and 5 show that the CNN model, which
does not have any structure to take temporal dependencies into
account, performs the worst. Moreover, the LSTM model, which
can capture some temporal dependencies, obtains performance
that is better than CNN but worse than TNN.

V. DISCUSSION

The proposed methodology outperforms the existing numeri-
cal and ML approaches, as displayed in Tables V–VIII. However,
the numerical schemes that solve differential equations with
exact conditions do not generalize well to all physical conditions.
Since the exact conditions make the schemes inflexible, the nu-
merical solutions have to be reinitialized for a grid, and then the
value propagated over the respective grid. Moreover, the updates
to the numerical models are done iteratively, which accumulates
the errors, and, thus, the prediction capability decreases as the
forecast horizon increases. Since the proposed methodology
uses the predictions from the WWIII model and then predicts the
residuals to generate wave height predictions, the performance
is better than the other numerical models.

The state-of-the-art ML methods compared do not take nu-
merical predictions into account while making forecasts. More-
over, the complex physics arising from interactions between
various environmental components is not considered. Figs. 6–8
show the difference in forecast skills between WWIII and cor-
rections using TNN. To generate these plots, the Transformer
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network is rerun with the same setup on the NOAA buoy
44014 for the period January 2010 to April 2015. We use the
train:validation split of (0.7:0.3) to train the model and then plot
the predictions of the resulting models in Figs. 6–8.

Figs. 6–8 display the predictions of WWIII hindcasts and the
corrections after applying TNN for buoy with NOAA Identi-
fier 44014 for May 2015. For Fig. 6, which shows the plot
of 3 h ahead residual correction using Transformer network,
the predictions are close to the true values. However, as the
forecast horizon increases to 24 h, the prediction skill of TNN
decreases, and the model overpredicts anomalous waves similar
to the WWIII. The decrease in prediction skills suggests that
while the statistical model helps improve short-term forecasts,
numerical methods contribute the most when forecasting longer
horizons.

While statistical models are considered accurate for nowcast-
ing up to 6 h, they perform poorly while making predictions
for more extended time horizons [85]. From Table VII, we
can see that the performance of the TNN is better after first-
differencing than without it. The removal of autocorrelations
arising from the deterministic components provides the data
on which ML methods can be used to make predictions. This
procedure also decreases the generalization error significantly,
as displayed in Section IV. After differencing, the generalization
error decreases, suggesting that combining them yields better
performance than using ML or numerical methods individually
for forecasting significant wave heights. Moreover, since the
prediction performance decreases slightly for second-order dif-
ferencing, it suggests that some noise is inserted when the order
of differencing increases above the order of 1.

The results of CNN used in this study, as shown in Figs. 4 and
5, are comparable to the recent work of Mooneyham et al. [39]
who used a residual CNNs to obtain bias-corrected forecasting
using only the spectral features as input. While the authors used
a neural network layer with eight hidden layers, which is two
times higher than the ones used in this study, the error-correction
is similar, and the least skillful CNN model also retains forecast
skill up to 48 h with 17.4% improvement compared to 10%–20%
for Mooneyham et al. up to 24 h. Furthermore, the authors have
23%–50% error reduction for the first 6 h, which is comparable
to ours. Compared to a similar setup, this improvement suggests
that data and the analysis fields derived from the hindcasts are
essential in data assimilation using neural networks.

The performance of LSTM and Transformer models, which
retain their prediction skill even when the forecast horizon
increases, suggests that the mechanisms used in those networks
are essential in capturing time dependencies, which are missing
from the numerical models. Moreover, since the Transformer
model outperforms other setups, we can infer that the attention
mechanism can capture long-range dependencies, thus yielding
superior results.

VI. CONCLUSION

In this article, we have proposed a Transformer-based frame-
work for highly accurate prediction of significant wave heights
in oceans using buoy data. The proposed method significantly

outperforms the state-of-the-art ML and numerical methods on
a case study performed using WWIII hindcasts as a numerical
proxy. The proposed methodology obtains the RMSE of 0.231 m
for two days ahead forecasting.

We have used various features like wave heights, average wave
period, dominant wave periods, wave direction, power spectral
density, and kurtosis from the buoys. Similarly, we have used U
and V components of wind, U and V components of currents,
sea–air energy flux, and directional spreading, along with lati-
tude and longitude for the prediction of significant wave heights.
Since the proposed method uses QC procedures, numerical
residuals, various relevant features, and the Transformer model
that differentially weighs the input features, the performance of
the proposed framework does not decrease significantly with the
forecast horizon.

The Transformer is a deep learning method that uses an
attention mechanism with an encoder–decoder architecture to
perform predictions. The attention model differentially weighs
the significance of each part of the input data, which helps better
identify the context that confers meaning to various parts of
a sequence. The Transformer model can thus be used to infer
context from the lagged variables used as features in this study.

Wave forecasting can be performed using model equations
of empirical relationships between various wave parameters.
Compared to the nonlinear differential equations, ML methods
provide similar models with lower computational complexity.
While differencing helps make the data stationary, the Trans-
former model captures various nonlinear interactions to improve
prediction performance. We posit that similar frameworks can
be used to forecast other wave properties in oceans.

VI. APPENDIX

A. Derivation of Power Spectral Density and Kurtosis

Since the variance of the spectrum is calculated over all fre-
quency bands, if we take the moments of individual frequencies,
sample variance [86], [87] can be calculated as in the following
equation:

S2 =
1

N − 1

N∑
i=1

(Xi − X̄)2 (14)

where X̄ is the sample mean, and N refers to the number of
samples.

Now, the expectation of S2 is defined as in the following
equation:

E[S2] = σ2 (15)

and the variance as in the following equation:

Var[S2] =
1

N

(
μ4 − N − 3

N − 1
σ4

)
for N > 1 (16)

where μ4

σ4 is the kurtosis and σ2 is the standard deviation.
Likewise, if the variables are uncorrelated, according to the

Bienayme formula [88], the variance of random variables is
equal to the sum of their variances as displayed in the following
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equation:

Var

(
N∑
i=1

Xi

)
=

N∑
i=1

Var(Xi). (17)

There exists a similar property for kurtosis if it is represented
in terms of excess kurtosis [89] which is displayed in the fol-
lowing equation:

γ =
μ4

σ4
− 3 =

1∑N
j=1 σ

2
j

N∑
i=1

σ4
i γi. (18)

We, thus, use σ4 and γ as the features in our study for
forecasting significant wave heights. Variance is derived from
the power spectral density and represents the energy of the
system [90]. Likewise, the excess kurtosis can also be interpreted
as a Benjamin–Feir index function [91] arising from the non-
linear Schrodinger equation in oceanic waters. Note that since
Transformer is able to learn nonlinear relationships, we use the
normalized versions of features for the study.

B. Calculation of Kurtosis from the Wave Spectra

Calculation of kurtosis is performed using Kuik et al. [92]
estimate of kurtosis as in the following equation:⎡

⎢⎢⎢⎣
a1

b1

a2

b2

⎤
⎥⎥⎥⎦ =

1

Eb

∫ 0.580

0.025

⎛
⎜⎜⎜⎝dfEr(f)

⎡
⎢⎢⎢⎣
a1(f)

b1(f)

a2(f)

b2(f)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ (19)

where a1 , a2 , b1 , and b2 are the Fourier coefficients, and E b

is the variance. The variance is calculated using the following
equation:

Eb =

∫ 0.580

0.025

dfEr(f). (20)

Afterward, we calculate m1 , θ, m2 , and kurtosis as in the
following equations:

m1 =
(
a21 + b21

) 1
2 (21)

θ = tan−1

(
b1
a1

)
(22)

m2 = a2cos (2θ) + b2sin (2θ) (23)

kurtosis =
μ4

σ4
= γ + 3 =

6− 8m1 + 2m2

[2(1−m1)]2
(24)

where m1 , m2 , θ, and γ represent first-order moment, second-
order moment, mean direction, and excess kurtosis, respectively.

C. Parameters of Transformer Neural Network

1) Optimizer: Adam (learning_rate = 0.0005, gamma =
0.95), epochs = 500, loss function = mean square error.

D. Buoys Used in the Study

1) Comparison With Numerical Methods: The 92 NOAA
buoys used for comparison with numerical methods are:

41008, 41009, 41010, 41013, 41025, 41040, 41041, 41043,
41044, 41046, 41047, 41048, 41049, 42001, 42002, 42003,
42012, 42019, 42020, 42035, 42036, 42039, 42040, 42055,
42056, 42057, 42059, 42060, 44007, 44009, 44013, 44014,
44020, 44025, 44027, 44065, 44066, 45001, 45002, 45003,
45004, 45005, 45006, 45007, 45008, 45012, 46001, 46011,
46012, 46013, 46014, 46015, 46022, 46025, 46026, 46027,
46028, 46029, 46041, 46042, 46047, 46050, 46053, 46054,
46060, 46061, 46069, 46072, 46075, 46076, 46078, 46081,
46082, 46086, 46088, 46089, 51000, 51003, 51101, 46221,
46214, 46211, 46224, 46215, 46222, 46213, 46239, 46240,
46243, 46232, 44100, and 42099.
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