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A B S T R A C T   

This research investigates the viability of using Machine Learning (ML) for predicting bathymetry. We built and 
trained several models using ocean features aggregated from multiple sources and predicted bathymetry from the 
ETOPO dataset at a 2-min resolution. Each model was evaluated to identify a global best fit, however we found 
that none performed well on a global scale. When training on subsets of the world, we observed that some models 
performed significantly better, which led to developing a novel model selection technique that identifies the best 
performing model and most relevant features for a given geospatial coverage. This leads to improved predictions 
and more reliable results. This model selection technique can be generalized to be applied to any set of models.   

1. Introduction 

The forefront in global bathymetry mapping is the aggregation of 
measured and predicted sources. Measured bathymetry comes from 
echo-sounders, which generate an accurate and high-resolution ba-
thymetry grid. However, surveys using echo-sounders are expensive, 
resulting in very limited global coverage of accurate measurements. 
Specifically, only 10% of the world has been mapped with echo- 
sounders (Becker et al., 2009). The remainder of the oceans’ bathyme-
try must be predicted. These come from the earth Gravitational Model 
(EGM), the standard for estimating global bathymetry (Becker et al., 
2009; Smith and Sandwell, 1994, 1997; Smith et al., 2010). 

Predicting bathymetry is a complicated problem that involves 
several unknowns. Very little accurate data is available for training due 
to the vast nature of the earth’s oceans. The majority of ocean feature 
data is either interpolated or predicted. Modeling bathymetry as a 
function of gravity is an excellent approach at coarse resolutions since it 
relies on the results of global measurements rather than interpolated 
data, however, prediction error becomes an issue at finer resolutions. 
Modern EGM predictions have an error of approximately 180 m (Jena 
et al., 2012). 

Our research focuses on identifying whether there is a global best fit 
model and investigates ways to optimize theoretical predictions. We 
implemented a genetic algorithm, which relies upon the principles of 
evolution (Yang and Honavar, 1998), to select the most relevant fea-
tures. We chose this approach because it would have been impractical to 

examine every feature combination exhaustively, and genetic algo-
rithms allow for near-optimal feature selection in a reasonable time 
frame. The known data used in this research is bathymetry from existing 
EGMs. It is important to note that this data is inherently predicted and 
validated to the best of human knowledge. Each predicted point has an 
estimated error of 180 m (Becker et al., 2009). Therefore, the data from 
EGMs is only sufficient for creating theoretical models. 

We were not able to identify a model that performed well globally. 
This led to the development of a novel model selection approach we call 
the Grid Optimized Ensemble. This approach gives us modest im-
provements and lays the groundwork for a number of future 
optimizations. 

2. Background 

This section provides the necessary background for this paper. We 
discuss bathymetry data and the current state of the art for bathymetry 
prediction models, as well as machine learning concepts, including the 
various types of learning, how machine learning could be applied to 
bathymetry prediction, and how to evaluate the results. 

2.1. Bathymetry 

Much of the world’s oceans are not mapped with high accuracy 
surveys (Becker et al., 2009). Approximately 90% of the oceans have not 
been surveyed, making the depth of the earth’s oceans a perplexing 
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mystery. In general, bathymetry, that is, the depth of a body of water at a 
given point, can either be measured or predicted. There are several 
techniques for obtaining accurate bathymetric measurements. They can 
be classified by direct measurements or remote sensing techniques. 
Bathymetry collected by Echo Sounders is an example of direct 
measured Bathymetry, Sattelite Derived Bathymetry, and Sattelite 
Altimetry Earth Gravitational Models are examples of remotely sensed 
bathymetry. 

Echo-sounders operate by monitoring sound as it passes through a 
column of water. The relationship between the height of the water 
column and the time required for sound to return will be directly related 
to the depth. This method is very accurate, resulting in less than a meter 
of error. Single-Beam echo sounders use a concentrated beam of sound 
to gain a high-resolution image of the seafloor. While this is ideal for 
detecting objects, the width of the recorded bathymetry is relatively 
small, at only a few meters in width. Multi-beam echo sounders, on the 
other hand, can achieve a track width of up to 2 km. They do not provide 
a high-resolution image of the seafloor, but they do record accurate 
bathymetry and are preferred for survey missions because of their wide 
coverage. 

Satellite Derived Bathymetry is a remote sensing approach that uses 
water’s attenuation to measure depth, however this approach only 
works in shallow water precisely because of that attenuation. There are 
techniques that improve on this to achieve higher accuracy in shallow 
waters with SDB. Two Media Photogrammetry corrects for the effects of 
refraction by observing the same bathymetry point from two sources 
(Cao et al., 2019). This method can be further improved by utilizing 
Machine Learning (Agrafiotis et al., 2020). 

The standard for predicting bathymetry was introduced by Smith and 
Sandwell, 1994, 1997, which uses Earth Gravitational Models (EGMs) 
for predicting bathymetry. Their approach predicts depth using the 
correlation between sea surface altimetry and geoid height. Sea surface 
altimetry is measured by satellites. The height of a sea swell is then 
mapped to an inferred gravity of an underwater geoid. This method is 
generally accepted as best practice for predicting globally, but it can 
often have a large error, resulting in inaccurate data. There are a number 
of variations on this model, each with its own strengths. The primary 
difference between them is the resolution at which the bathymetry is 
predicted. 

An issue with EGMs is that bathymetry does not correlate directly 
with sea surface altimetry. There are many factors that introduce errors 
to that correlation. To overcome these factors, a scaling factor is used in 
the prediction function. Machine Learning has been shown to improve 
the error of these prediction models by optimizing that scaling factor. 
For example, Jenna et al. (Jena et al., 2012) used machine learning to 
identify a scaling factor for optimizing bathymetry prediction models. 
Specifically, they trained models to predict an optimal scaling factor that 
was used to correct for differences in regional sediments and geoid 
properties. Smith and Sandwell (1994) introduced scaling factors but 
calculated them programmatically. Jenna et al. (Jena et al., 2012) 
introduced machine learning for optimizing this scaling factor which 
showed to improve its effectiveness. More importantly, they surveyed 
areas of the Arabian Sea and calculated an average error of 180 m with 
known predicted bathymetry in those areas. 

2.2. Machine learning 

Machine Learning (ML) is the use of trained models to predict a 
value. ML approaches can be cataloged into several different categories. 
They may be supervised or unsupervised depending on whether the 
training data is labeled with the values the model should predict. Su-
pervised ML models can be further subdivided into regression or clas-
sification. Regression models attempt to predict a continuous value, 
while classification models attempt to predict a label from a set of 
discrete values. 

Regression would seem to be the natural approach for predicting 

bathymetry. After all, the depth of the ocean at any point is a continuous 
value. Our training data, however, is itself a predicted value, and as 
noted in (Jena et al., 2012), it is subject to an average error of 180 m. 
Therefore, as we discuss in detail in Section 3, we modeled this problem 
as a classification problem. 

Some of the classification models are binary, that is, they consider 
two labels: positive and negative. In this case, multi-class classification 
operates by iterating over the range of labels, setting the current label as 
the “positive” case and all others as the negative case. 

Classification over a continuous range is achieved using an approach 
called “binning.” The range of possible values is divided into bins, not 
necessarily of fixed size. The training labels are converted to represent 
their respective bin, so a training value of 1900 m could be given the 
label (2000–1850 m). 

In addition to labels, an ML model needs data related to the label to 
aid in prediction, called features. Often, there are a number of features to 
choose from, and it is not always clear which will provide the most 
value. Some features will be noise and unnecessary for the final pre-
diction, which will slow down the model’s execution. Identifying the 
appropriate features is known as feature selection. 

There are a number of valid approaches for approaching feature 
selection, including grid search, dimensional analysis, simple variable 
correlations, and genetic algorithms. Grid search is an exhaustive search 
through the feature space, attempting all combinations of features to 
determine which provide the most benefit. Dimensional analysis and 
simple variable correlations examine relationships between features 
with the goal of reducing the feature space. Due to the number of fea-
tures we examined in this work, these approaches either took too long or 
simply did not offer enough improvement to the model. 

This work used a genetic algorithm approach for feature selection 
(Yang and Honavar, 1998). The genetic algorithm approach gave rela-
tively quick model improvements with little effort. Fig. 3 shows the basic 
flow of a general genetic algorithm. This can be expressed in terms of 
states. At the initial state, a population is created. In this work, the 
population is some combination of possible feature selections. After 
initialization, each member’s fitness is assessed, that is, each permuta-
tion of features are evaluated by using them to execute a model. Next, 
members are sorted by their fitness score, and some number of 
top-scoring members are carried forward. It is not required that only 
high-performing members are carried forward, however since the goal is 
to identify the optimal feature set, we don’t want to omit the high 
performers. Next, the population is replenished by combining carryover 
members to generate new population members. A random mutation 
follows this to a subset of the population. This process repeats until some 
termination condition is met, where the top performer is selected as the 
optimal set. It is important to note that the genetic algorithm is not 
deterministic. Due to the randomness, two runs could result in very 
different results. However, when the search space is too large for an 
exhaustive search, the genetic algorithm makes a good compromise. 

Validating Machine Learning models helps ensure that a model does 
not overfit training data. Overfitting occurs when a model is only able to 
predict data that it has encountered during training. Validation ad-
dresses this by evaluating a model’s effectiveness at predicting data it 
has not seen before. In order for this to work, some of the labeled 
training data must be held out of the training process so that the model 
does not have the opportunity to learn from it. 

k-Fold cross-validation is an effective way for validating models. It 
works by dividing a training set into k groups, called “folds.” k iterations 
are then executed. At the i-th iteration, the i-th fold is withheld. The 
model is trained on folds j ∈ [1, k], j ∕= i and then evaluated using i-th 
fold. The testing results are then averaged across the k iterations, which 
results in a validation score. A common value for k is 10, which would be 
referred to as 10-fold cross-validation. 

An ML pipeline defines the steps and processes used for producing a 
prediction model end to end. A typical pipeline would include loading 
various data sources, cleaning the data by assigning default values or 

N. Moran et al.                                                                                                                                                                                                                                  



Deep-Sea Research Part I 185 (2022) 103788

3

removing outliers, normalizing the data to some standard range, typi-
cally [0,1], training a model, and evaluating the results. The benefit of 
defining a pipeline in this fashion rather than only operating on clean 
data is that the entire process is repeatable. Perhaps the amount of data 
is too large for processing on commercial hardware, but working with a 
subset can provide the researcher with confidence that the algorithm is 
working. The completed pipeline can then be transferred to equipment 
suitable for the large data without requiring additional work. In addi-
tion, more data could become available well after the initial pipeline was 
created. If the pre-processing steps were not included in the pipeline, it 
may not be clear how the new data should be processed to make it 
compatible with the existing models. 

Scikit Learn is an open-source library developed by the Python 
community (Pedregosa et al., 2011). It exposes an intuitive Application 
Programming Interface (API) and a framework for creating ML models. 
It also provides frameworks for key components of the ML pipeline, such 
as feature selection and model selection. This framework is implemented 
for many existing models. New models and components can be imple-
mented that will likewise interface with other pieces of the library. For 
example, we implemented a genetic algorithm component for feature 
selection using the sklearn API. This component was then able to be used 
seamlessly with all existing models and other sklearn components. 

2.3. Metrics 

In order to evaluate a model and determine its usefulness, we must 
calculate some metrics. There are a variety of useful ML evaluation 
metrics. For this research, we relied primarily on R2, F1-score, and 
Balanced Accuracy. All metrics, as shown, are for a binary classification 
problem. For use in a multi-class classification problem, each metric is 
applied to a class, and then all calculations are averaged. 

The R2 metric, also known as the coefficient of determination, is a 
measure of variance in the dependent variable that is predictable from 
the independent variables. The R2 score reflects how useful the features 
of a model are as predictors, with higher values indicating higher utility. 
For a given training dataset with n entries, where an entry represents the 
set of features and the label for a given geospatial location, we can use 
Equation (4) to calculate the R2 metric. The value yi represents the 
known labels, f represents the predicted label, and μ represents the mean 
of the known labels. 

R2 = 1 −

∑n
i=1(yi − fi)

2

∑n
i=1(yi − μ)2 (4) 

For a classification model, training data is labeled into classes and 
the model predicts a class label for new input data. Predictions that 
correctly define a class are labeled as True, and predictions that incor-
rectly define a class are labeled as False. To simplify the following 
metrics, the equations will be defined in terms of binary classification 
where there are two classes, Positive and Negative. Precision, known as 
the true positive rate, is shown in Equation (5). It is a measurement of 
how good a model is at avoiding false positives. Recall, shown in 
Equation (6), is a measurement of how good a model is at avoiding false 
negatives. The F1-Score, shown in Equation (7), represents a harmonic 
mean of a model’s precision and recall. 

precision=
True Positives

True Positives + False Positives
(5)  

recall=
True Positives

True Positives + False Negatives
(6)  

F1 Score= 2 ×
precision × recall
precision + recall

(7) 

The Balanced Accuracy matric is useful for datasets with imbalanced 
labels, that is, a given label has a significantly larger or smaller number 
of examples than another. For example, consider a classification 

problem with 100 samples, 95 of which are positive, and 5 are negative. 
A classifier could predict all 100 as positive, giving it an impressive 95% 
accuracy, despite performing so poorly against the negative cases. 
Balanced accuracy, shown in Equation (8), will give a score of 50%, 
which is a better indication of the success of that classifier’s results. 

Balanced Accuracy=
True Positive Rate + True Negative Rate

2
(8) 

The Pearson Correlation Coefficient (PCC) is the covariance of two 
variables divided by the product of their standard deviations. The value 
ranges between − 1 and 1 and implies a linear relationship between the 
two variables. A value closer to 1 implies a direct relationship between 
the variables. A value closer to − 1 will denote an indirect relationship 
between the variables. A value of 0 will imply no linear relationship 
between the variables. 

3. Methodology 

This section details the approach taken in this research. In Section 2, 
we described a general machine learning pipeline. This section describes 
the various stages of the pipeline used in this research, which can be 
divided into two main phases, the data pre-processing phase, and the 
learning phase. 

The data pre-processing phase involves all of the steps necessary to 
begin using the data. We begin by describing the data used in this effort, 
including the feature data as well as the bathymetry labels, which are 
the values we are trying to predict. We describe how the relevant ocean 
features were selected from a large set of aggregated features. This step 
involves aggregating and gridding the features, cleaning the data by 
interpolating missing values and masking land, and identifying the 
relevant features with a genetic algorithm. 

The learning phase involves building models using the training data 
and validating their predictions using 10-fold cross-validation. We 
describe our use of the trained models to make predictions with the goal 
of identifying a global best fit. Finally, we describe the Grid Optimized 
Ensemble, a novel model selection approach that gives modest perfor-
mance improvements. 

3.1. Data representation 

All data used in this research was placed into grid structures. Natu-
rally, the data represent geospatial locations on earth, and mapping a 
large circular sphere to a flat grid is not a direct conversion. Latitude and 
Longitude represent the grid lines for the earth. The grid representation 
provides a standard that allows multiple grids with different sets of data 
to reference the same geospatial areas. 

The spatial resolution of a grid defines its coverage and can be 
described by a grid cell’s height and width. The cell height and width are 
not spatially constant; for example, a cell at the equator is larger and 
covers more physical area than a cell at the poles. Despite this, the grid 
format is preferred because it allows data from multiple disparate 
sources to be aggregated consistently and structured. 

All data in this research has been organized into 2-min bathymetry 
grids. A 2-min bathymetry grid has a spatial resolution of 0.034◦ per cell, 
which is approximately 3 km of spatial coverage. The grids have a col-
umn count of 5400 cells and a row count of 10,800 cells. This resolution 
was chosen for experiments to conserve memory and time. Larger grids 
have an exponentially larger memory and computational footprint. We 
used the ETOPO2v2 (National Geophysical Data Center, 1988) dataset 
as the source of the 2-min bathymetry grid. Finer resolution datasets 
exist, such as the SRMT30 (Becker et al., 2009) at the 30-s resolution; 
however, the 2-min resolution offers a good balance of memory, accu-
racy, and computational costs. 
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3.2. Bathymetry interval labels 

The ETOPO dataset is an aggregation of sparse MBES ship soundings 
and predicted bathymetry from an EGM. It is an updated version of the 
original ETOPO2 dataset and was chosen for this research because of the 
2-min resolution it offers. ETOPO was aggregated by the National 
Geophysical Data Center (NGDC), a National Oceanic and Atmospheric 
Administration department. 

Land topography is included in the ETOPO dataset. This proved to be 
an issue for creating accurate bathymetry predictions; therefore, a mask 
was created to remove the land topography. This is applied to all data 
before training to ensure that only ocean data is used in training. The 
mask was constructed of Boolean values to mark cells for inclusion or 
exclusion. If a cell contains a majority of land, it will be marked for 
exclusion. This approach worked well for masking land for training. 

Ocean features were aggregated from several studies and placed into 
2-min bathymetry grids. This data’s gridding was done so that data in a 
specific geospatial area could easily be referenced to data from a 
different source in the same spatial area. 

The continuous bathymetry data from the ETOPO dataset was used 
for training data. To facilitate this for classification, the ETOPO dataset 
was binned into discrete classes. This binning was performed at 150-m 
intervals. This effectively gives a bathymetry label an error of 150 m. 
This error was desired so that it could be compared to the results from 
Jenna et al. (Jena et al., 2012). 

3.3. Feature data 

The feature data used in this research was aggregated from the 
various ocean and earth studies. This data was normalized and con-
verted to the grid format so that it could be used together. Missing data 
points were either interpolated or given default values. Our goal was to 
gather a large set of features regardless of the data’s immediate rele-
vance. In general, the features examined in this research were consid-
ered for their potential as predictors. 

The normal approach for predicting physical planetary phenomena is 
to develop a mathematical model that focus on the underlying physical 
processes involved in the phenoma. For ocean bathymetry, seamounts 
are a factor in the depth of our oceans and their height can be mathe-
matically modeled by sea surface altimetry which correlates to the 
gravitational pull of the seamount. That correlation is the backbone of 
the mathematical modeling approach known as EGMs. We approached 
this from a data science perspective. That is, rather than attempting to 
define a model relating some feature, e.g., fish biomass, with bathym-
etry, we used the tools provided by ML to identify which features were 
related. From this, we can examine the relationship further to determine 
if the correlation implies causation and whether a more refined model 
could be built. 

Our synthetic datasets offered an effective tool for experimenting 
with ML in this problem space. Ideally, if some particular feature data 
introduces significant noise, then it will be removed during feature se-
lection. Our initial work began with 79 potential features. The features 
deemed most relevant, along with their originating study, are shown in 
Table 1. 

A detailed analysis of the relationship between these features and 
their utility in predicting bathymetry is out of the scope of our work, 
however, we will note that the features selected by the genetic algorithm 
are those with stronger Pearson correlation coefficients. 

Fig. 1 shows a plot of estimated fish biomass against bathymetry. 
This positive linear relationship is easy to see in the graph and is re-
flected in the Pearson Correlation Coefficient (PCC) value of 0.6834. It 
can be conjectured that this relationship is more correlation than cau-
sality. For example, biomass increases are not caused by shallow depths. 
The shallow depth has more available light, which allows for vegetation 
and energy supplies for more species, which could explain the rela-
tionship shown in this figure. 

Table 1 
List of Ocean Features used in Models for this project.  

Feature Origin Study 

Mantle Density CRUST1 (Laske et al., 2013) 
LAND One Hot ETOPO (National Geophysical Data Center, 

1988) 
Crust Thickness CRUST1 (Laske et al., 2013) 
Low, Mid, High Crust Density CRUST1 (Laske et al., 2013) 
Estimated Current East, North, 

Mag 
HYCOM (Chassignet et al., 2009) 

Sea Nitrate, Phosphate, Salinity 
Measurements 

NASA Studies (Meissner Frank and Le Vine, 
2018; Parekh et al., 2005) 

Sea Temperature, Silicate 
Measurements 

NASA Studies 

Sediment Thickness CRUST1 (Laske et al., 2013) 
BioMass Features CRUST1 (Wei et al., 2010) 
Geoid Features EGM (Pavlis et al., 2008) 
Wave height, period WAVEWATCH (Tolman, 2007)  

Fig. 1. Graph of Bathymetry and Estimated Fish BIOMASS. Bathymetry is 
measured in meters, and Fish Biomass is measured in grams. The Pearson 
correlation coefficient between these values is 0.6834, indicating a strong 
positive linear relationship. 

Fig. 2. Graph of Bathymetry and Estimated Crust Density. Bathymetry is 
measured in meters, and Crust Density is measured in milligrams per squared 
centimeter. The Person correlation coefficient between these values is − 0.5425, 
indicating a strong negative linear relationship. 
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Fig. 2 shows a graph of crust density against bathymetry. A negative 
linear relationship can be seen in the graph, which is reflected in the PCC 
value of − 0.5425. This relationship may be more of causality than 
correlation. The denser crust is caused by many different factors that are 
separate from bathymetry. It is possible that deeper water columns and 
the resulting weight contributed, but it cannot be used to describe the 
correlation of the variables. 

The relationship between bathymetry and features such as estimated 
oxygen, nitrogen, and salinity may have intuitive explanations, while 
other features, such as crust density, may not be so easily explained. The 
challenge with the data science approach is in explaining why certain 
features were selected. While we don’t address that problem here, future 
studies in the relationship between these features and their relationship 
to bathymetry will be necessary. 

3.4. Feature selection 

Our genetic algorithm for feature selection is a simple implementa-
tion. The population is represented by a set of binary strings, randomly 
initialized. Each string has a character length equal to the number of 
features in our feature space, i.e., each string is 79 characters long. Each 
character represents whether a feature is active or not. We then trained a 
Random Forest model using each feature combination from the popu-
lation. The resulting model’s accuracy using 10-fold cross-validation 
represents the fitness of that combination of features. Selection is per-
formed by choosing the top 20% of models whose feature combinations 

performed best and passing those combinations onto the next genera-
tion. A simple crossover mutation of the strings is used to replenish the 
population along with a modest 5% mutation rate. The algorithm ter-
minates when an accuracy of greater to or equal to 75% is reached. We 
selected the feature combination whose model performed best as the 
feature set for the remainder of this effort. The winning features are 
shown in Table 1. 

3.5. Learning methodology 

Regression is an intuitive approach to predicting bathymetry. We 
trained three regression models to test the effectiveness. However, we 
found that the regression models from SK Learn performed poorly. 
Therefore, the reminder of our effort focused on classification models. 

Classification models were chosen over regression for two reasons. 
First, regression models output a continuous value. Intuitively this 
seems like the ideal approach, however, we note that we don’t actually 
know the true bathymetry for much of the world’s oceans. Therefore, 
trying to train a model to predict a value that itself has 180 m of error 
does not make as much sense. Our goal was not to predict true ba-
thymetry since we aren’t able to validate this. Our goal was to determine 
if a single model could be used to make predictions for the entire world. 
Predicting a bin with a range of 180 m was sufficient to meet this goal. 
Second, we found classification models were easier to work with and 
simply performed better than regression models. 

To perform classification, models must be trained using discrete 
values. We mapped the ETOPO data from continuous values to discrete 
labels by creating binned ranges. This proved to be trivial due to the 
ordered nature of bathymetry. The range of each bin was the same, 150 
m, and there were a total of 128 bins. 

Models were evaluated using 10-fold cross-validation with Balanced 
Accuracy as the scoring function. 10-fold cross-validation was chosen 
because it offered a very quick validation compared to other approaches. 
The models trained in this project were imported from the Sklearn li-
brary and are listed in Table 2. 

3.6. Model selection methodology 

The original goal of this effort was to determine if a best-fit model for 
global predictions could be identified. This involved training models 
against global coverage and evaluating their performance. We trained 
10 models and evaluated them using 10-fold cross-validation as dis-
cussed in the previous section, and used the validated performance 
metrics to compare models. The outcomes are covered in the Results 
section, however, in short, it was observed that many models performed 
poorly on a global scale. 

This led to an investigation of whether locally optimum models could 
be used for predictions, that is, whether there are geospatial areas where 
a particular model outperforms other models. To perform this test, we 
split the world into 4050 geospatial coverages. We trained the full set of 
models on the data for those areas and validated the results. The model 
that was most successful in a particular area was then recorded. The 
results of this experiment lead to the creation of a novel model selection 
technique called “Grid Optimization.” Instead of expecting a single 
model to perform well globally, the optimized grid approach chose the 
most appropriate model based on the region. This led to an improvement 
in global prediction performance. 

Fig. 3. State diagram of general genetic algorithm.  

Table 2 
List of Classifier Models trained and evaluated for this project.  

Random Forest (RFC) Bagging (BAG) 

Decision Tree (DT) k Nearest Neighbors (KNN) 
Multi-Layer Perceptron (MLP) Ada Boosting (ABC) 
Gaussian Naïve Bayes (GNB) Voting Classifier (VC) 
Support Vector Classifier (SVC) Quadratic Discriminant (QDC)  
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4. Results 

This section details the results of our experiments. We begin by 
looking at the global models and discussing the top performers. We then 
look at the locally trained models and identify which performed well in 
each coverage. Finally, we discuss the Grid Ensemble Global Model and 
compare its results against the standard global models. 

4.1. Global models 

We trained and evaluated 10 models using the features listed in 
Table 1. The models we trained are listed in Table 2. The Voting, SVC, 
Gradient Boosting, and QDA classifiers failed to complete training due to 
the amount of data involved. These were trained on reduced sets of data, 
which we detailed in Fig. 4. They were hand-chosen to include features 
from across the globe in different environments and hemispheres. It is 
important to note that we could not get the Support Vector Classifier 
(SVC) to train with a reduced dataset. 

We used F1 and balanced accuracy metrics to evaluate their per-
formance, which are shown in Fig. 5. As we can see, the Random Forest 
and Bagging classifiers were the highest performing models. KNN also 
performed well, however, this result is suspect since we were unable to 
fully train it. With a balanced accuracy of 0.47, the Decision Tree clas-
sifier performs so poorly that it should not be used for predictions. The 
remaining classifiers performed even worse. 

4.2. Local models 

In order to get a better understanding of these models’ performances, 
we divided the world into coverages. The size and shape of the coverages 
were chosen arbitrarily, large enough to enable quick calculations but 
small enough to visualize trends. We then trained and evaluated each of 
the ten models against each coverage. We determined which performed 
best in the region based on the F1 score and the balanced accuracy 
metric. The results of this experiment are shown in Fig. 6. Each square 
represents a coverage, which is color-coded based on the best per-
forming model for that coverage. Fig. 7 shows the percent of coverages 
where a particular model performed best. As expected, the Random 
Forest and Bagging classifiers dominated, however roughly a third of the 
world was best predicted by one of the other models. These models, 
when trained globally, performed too poorly to be of any use, however, 
they performed well in very specific instances. 

Examining Fig. 6 more closely, we notice that although the Random 
Forest classifier performed best overall, the bagging classifier performs 

well around the shallow coastlines, and the Decision Tree classifier 
performs well along fault lines. This suggests that each model’s decision 
boundary is responding to certain trends in the data. 

4.3. Regression results 

We trained three regression models to predict bathymetry. Table 3 
shows the metrics for the regression models. The R Squared score shows 
a strong correlation with the underlying data. However, the error of the 
models is large. This large error made using regression impractical for 
our experiments. An accurate prediction from the classification models 
has an error of 150 m. This offered far better accuracy compared to the 
regression error shown in Table 3. 

4.4. Grid Ensemble Global Model 

We developed an ensemble method that selected the most appro-
priate model for coverage based on the results shown in Fig. 6. This 
approach resulted in modest improvements to the global prediction re-
sults, shown in Fig. 5. As this figure shows, the Random Forest classifier, 
the best performing global classifier, had an F1 score of 0.81 and a 
balanced accuracy score of 0.82 for global predictions, however, the grid 
optimized ensemble method brought that value up to 0.83 and 0.85, 
respectively. 

Fig. 8 shows the average balanced accuracy score for the regionally 
trained models. In this figure, the results are only included when that 
model is selected as the best fit for that region. So, for example, although 
the Gradient Boosting had the highest average balanced accuracy, Fig. 8 
shows that it was selected for less than 1% of the world. 

The code and data related to this research can be found here, 
https://github.com/nichipedia/masters-thesis-code. 

5. Conclusions 

In this work, we detailed our attempt to identify a machine learning 
model capable of predicting global bathymetry. We trained a collection 
of models and evaluated the results using the ETOPOv2 dataset, which is 
itself predicted bathymetry. We were not able to identify a single model 
that is a best fit for predicting global bathymetry, however, this work 
demonstrates that while some models perform poorly for global pre-
dictions, they still perform well when used in specific areas. We 
concluded that some feature and model combinations perform well 
together, which led to the creation of an optimal model selection tech-
nique, the Grid Optimized Ensemble. When applied, this technique leads 

Fig. 4. List of reduced datasets.  
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to a modest increase in accuracy over models trained on global features. 
Finally, we acknowledge that most of this work has been exploratory, 
lacking the rigor needed to make definitive statements about the us-
ability of a particular model or combination of models for predicting 
global bathymetry, and we suggested future avenues of research to close 
that gap. 

As we’ve stated, our original goal was to identify an ML model that 
performed well globally. We determined that no such model existed and 
developed the optimized regional ensemble for model selection. How-
ever, we note that the choice of region coverage size and shape was 
purely arbitrary. This approach gave us good results, which we’ve re-
ported here, however, there are still a number of avenues we are 
interested in pursuing. 

Our feature selection step landed on a set of features that were used 
with all models, although our work showed that each of the models 
keyed in on particular features. An interesting alternative would be to 
perform the feature selection step for each model independently. In 
addition to ensuring each model is given the most relevant features and 
removing noise that other models find useful, this would give us more 
insight by showing which feature and model combinations work well 
together. 

We divided the world into a set of coverages based on computational 
expenses. We wanted to be able to run this experiment on commercial 
off-the-shelf hardware, and although it ran for several days, this was 
within our tolerance level. An alternative approach that would require 
significantly more resources would be to train on a sliding window. The 
coverages would overlap, and each grid cell would contribute to mul-
tiple coverages. Based on these results, we could define irregularly 
shaped regions around the best performing model. 

We trained each coverage in isolation. This was useful for identifying 
which model performed best specifically for that coverage. It would be 
useful to see if a second-order model, one trained on all of the coverages 
that it performed best at, could further improve the results. The intuition 
here is that if a particular model key on a set of features, for example, 
fish biomass, then training on all regions where that feature dominates 
could increase the amount of training data available to that model. 

Finally, we’re interested in identifying regions that perform poorly 
for all models. We are interested in identifying regions where an in-
vestment in a detailed bathymetric survey would provide useful details 
that a model could then use to answer questions about other similar 
regions without requiring a survey in that area. 

Fig. 5. Balanced Accuracy and F1-Score metrics for all models.  

Fig. 6. World Coverages and Successful Models. Each square represents a coverage. The shaded color represents the model that was most successful in that coverage.  
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Fig. 7. Percentage of coverages where a model was “best fit.”  

Table 3 
Table of regression results.  

Model R2 Score Median Absolute Error Mean Absolute Error 

SVM Regression 0.841 365.23 480.21 
Naïve Bayes 0.884 294.92 390.80 
Linear Regression 0.885 290.13 387.48  

Fig. 8. Average prediction accuracy of coverages where a model performed 
well. GBC had the highest average accuracy but was only the best model for less 
than 1% of the coverages. 
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