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A B S T R A C T   

The protein disulfide bond is a covalent bond that forms during post-translational modification by the oxidation 
of a pair of cysteines. In protein, the disulfide bond is the most frequent covalent link between amino acids after 
the peptide bond. It plays a significant role in three-dimensional (3D) ab initio protein structure prediction 
(aiPSP), stabilizing protein conformation, post-translational modification, and protein folding. In aiPSP, the 
location of disulfide bonds can strongly reduce the conformational space searching by imposing geometrical 
constraints. Existing experimental techniques for the determination of disulfide bonds are time-consuming and 
expensive. Thus, developing sequence-based computational methods for disulfide bond prediction becomes 
indispensable. This study proposed a stacking-based machine learning approach for disulfide bond prediction 
(diSBPred). Various useful sequence and structure-based features are extracted for effective training, including 
conservation profile, residue solvent accessibility, torsion angle flexibility, disorder probability, a sequential 
distance between cysteines, and more. The prediction of disulfide bonds is carried out in two stages: first, in-
dividual cysteines are predicted as either bonding or non-bonding; second, the cysteine-pairs are predicted as 
either bonding or non-bonding by including the results from cysteine bonding prediction as a feature. 

The examination of the relevance of the features employed in this study and the features utilized in the existing 
nearest neighbor algorithm (NNA) method shows that the features used in this study improve about 7.39 % in 
jackknife validation balanced accuracy. Moreover, for individual cysteine bonding prediction and cysteine-pair 
bonding prediction, diSBPred provides a 10-fold cross-validation balanced accuracy of 82.29 % and 94.20 %, 
respectively. Altogether, our predictor achieves an improvement of 43.25 % based on balanced accuracy 
compared to the existing NNA based approach. Thus, diSBPred can be utilized to annotate the cysteine bonding 
residues of protein sequences whose structures are unknown as well as improve the accuracy of the aiPSP 
method, which can further aid in experimental studies of the disulfide bond and structure determination.   

1. Introduction 

Disulfide bonds in proteins, also known as disulfide bridge or SS- 
bond, are formed between the thiol (-SH) groups of cysteine residues 
by oxidative folding. After the peptide bond, the disulfide bond is the 
most common covalent connection between cysteine residues in pro-
teins (Mossuto, 2013). Disulfide bonds play a significant role in stabi-
lizing proteins thermodynamically by decreasing the entropy of the 
unfolded state, increasing mechanical stability, and confining confor-
mational changes by imposing geometrical constraints on the protein 
backbone (Fass, 2012; Chuang et al., 2003). Accurate identification of 
disulfide bonds can significantly reduce the large and convoluted 
conformational search space of possible protein conformation and 

subsequently facilitate the ab initio protein structure prediction (aiPSP) 
(Márquez-Chamorro and Aguilar-Ruiz, 2015; Huang et al., 1999) for an 
improved prediction of 3D protein structure. For example, Yang et al. 
developed a machine learning approach for disulfide bridge prediction 
and integrated the outcome with QUARK simulations for better accuracy 
(Yang et al., 2015). The usefulness of the disulfide bonds has been 
recognized in various physiological function such as cell death (Naka-
mura and Lipton, 2009), hemostasis (Hogg, 2009), G-protein-receptors 
(Wess et al., 2008) and growth factors (Guo et al., 2010), and patho-
logical processes such as tumor immunity (Dranoff, 2009) and neuro-
degenerative misfolding diseases (Mossuto, 2013; Nakamura and 
Lipton, 2009). 

However, the existing experimental techniques such as X-ray 
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crystallography (Sutton et al., 2013), mass spectrometry (Sun and 
Smith, 1988), NMR (Mobli and King, 2010), and radiation experiment 
(Chaudhuri et al., 2001) for the determination of disulfide bonds require 
time-consuming and expensive apparatus. Hence, it is important to 
develop computational methods for the fast and effective identification 
of cysteine disulfide bonds at the proteome level. The computational 
method refers to a wide variety of approaches that capture various in-
formation, such as structural, sequential, and other proteins’ physico-
chemical properties. Several attempts have been made in identifying 
disulfide bonds, and several computational methods have been proposed 
in the literature for analyzing them (Fariselli and Casadio, 2001; Niu 
et al., 2013; Song et al., 2007; Vincent et al., 2008; Tsai et al., 2005; 
Cheng et al., 2005; Lin et al., 2012). 

Disulfide bonding state prediction of individual cysteines in proteins 
is necessary to predict disulfide connectivity. Numerous studies on 
computational methods can predict disulfide bonding state in the liter-
ature (Muskal et al., 1990; Fiser et al., 1992; Fariselli et al., 1999; Fiser 
and Simon, 2000). Moreover, one of the first computational approaches 
for disulfide bond prediction was presented by Fariselli and Casadio 
(2001), where they reduce disulfide connectivity to the graph matching 
problem in which vertices represent oxidized cysteines and edges be-
tween the associated pair of cysteines are labeled with the contact po-
tential. Consequently, the Monte Carlo simulated annealing method was 
used to find the optimal values of contact potentials. Finally, the disul-
fide bonds were located by finding the maximum weighted perfect 
matching. Following this work, several neural network-based methods 
(Cheng et al., 2005; Vullo and Frasconi, 2004; Ferrè and Clote, 2005) 
were proposed. 

Conversely, Ferre and Clote developed a web server called DiANNA 
1.1 (Ferrè and Clote, 2006), which uses a support vector machine (SVM) 
with a spectrum kernel for the classification of cysteines into reduced 
(free), half-cysteine (involved in disulfide bond), or metallic 
ligand-bound state. Likewise, Song et al. developed a disulfide connec-
tivity predictor using a support vector regression trained on multiple 
sequence feature vectors and predicted secondary structures (Song et al., 
2007). Rubinstein and Fiser (2008) developed yet another method that 
analyzes correlated mutation patterns in multiple sequence alignments 
to predict disulfide bonds. For the proteins with two, three, and four 
disulfide bonds, their method’s prediction accuracy is 73 %, 69 %, and 
61 %, respectively, which indicates that their program is limited for 
proteins with a fewer number of disulfide bonds. Vincent et al. intro-
duced a method for predicting disulfide bridges using two decomposi-
tion kernels to measure the similarity between protein sequences 
according to the amino acid environments around cysteines (Vincent 
et al., 2008). 

In the recent past, Zhu et al. (2010) applied both global and local 
sequential and structural features of proteins to predict disulfide bonds 
using support vector regression, which achieved the prediction accuracy 
of about 76 %. In their work, the authors highlight the use of three 
different filter-based feature selection methods, namely, variance score, 
Laplacian score, and Fisher score. Lin and Tseng developed a method for 
disulfide bonding connectivity pattern prediction using the coordinates 
of the alpha-carbon of each residue to compute the normalized pair 
distance and use it as an input to the SVM (Lin and Tseng, 2010). More 
recently, Niu et al. (2013) devised a method for inter- and intra-chain 
disulfide bond prediction using the nearest neighbor algorithm (NNA) 
by optimal feature selection based on maximum relevance and mini-
mum redundancy (mRMR) followed by incremental feature selection 
(IFS). This method utilizes features such as sequence conservation, re-
sidual disorder, and amino acid factor for an inter-chain disulfide bond 
prediction. Moreover, for an intra-chain disulfide bond prediction, the 
features used for inter-chain along with the sequential distance between 
a pair of cysteines are utilized. Table 1 summarizes the recent works on 
disulfide bond prediction. 

In this work, we established an advanced machine learning tech-
nique called stacking to predict disulfide bonds. The prediction of 

disulfide bonds is achieved in two stages: first, the bonding state of in-
dividual cysteines is predicted; second, the disulfide bonding of cysteine- 
pairs is predicted by including the results from individual cysteine 
bonding state prediction as a feature. Various useful sequence and 
structure-based features are extracted and used for individual cysteine 
and cysteine-pairs disulfide bond prediction. For predicting single or 
individual cysteine bonding, features such as residue profile, physi-
ochemical profile, conservation profile, structural profile, flexibility 
profile, and position-specific energy profile are used. In addition to these 
features, the sequential distance between a pair of cysteines and indi-
vidual cysteine bonding state probability is also used for cysteine-pairs 
bonding prediction. For individual cysteine and cysteine-pair disulfide 
bonding prediction, diSBPred attains 10-fold cross-validation balanced 
accuracy of 82.29 % and 94.20 %, respectively. Altogether, our method 
achieves an overall improvement of 43.25 % based on balanced accu-
racy compared to the existing NNA based approach. These results 
indicate that the diSBPred can be utilized to annotate the sequences 
whose structure has not been experimentally determined and facilitate 
the aiPSP method, which can further aid in experimental studies of the 
disulfide bond structure determination. Fig. 1 illustrates the workflow of 
our proposed method. 

2. Materials and methods 

This section presents our benchmark/training dataset preparation 

Table 1 
Recent works on the prediction of disulfide bonding state.  

Authors Method 

Fariselli and Casadio (2001) Monte Carlo simulated annealing 
Cheng et al. (2005) Neural network 
Vullo and Frasconi (2004) Neural network 
Ferrè and Clote (2005) Neural network 
Ferrè and Clote (2006) Support vector machine (SVM) 
Song et al. (2007) Support vector regression 
Rubinstein and Fiser (2008) Correlated mutation patterns 
Vincent et al. (2008) Decomposition kernels 
Zhu et al. (2010) Support vector regression 
Lin and Tseng (2010) Support vector machine (SVM) 
Niu et al. (2013) Nearest neighbor algorithm (NNA)  

Fig. 1. Illustrates the workflow of the disulfide bond prediction.  
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approach, feature mining, performance assessment, and machine 
learning-based disulfide bond predictor development. 

2.1. Dataset 

We collected the benchmark dataset established previously by Niu 
et al. (2013). It was reported that the dataset consists of 2930 proteins. 
However, we were able to collect only 2674 unique protein ids. These 
unique UniProt ids were searched in the UniProt (Consortium, 2007) 
database to obtain protein sequences and disulfide annotation. During 
our search of these proteins in UniProt, we found some of the proteins 
marked as obsolete. Such obsolete sequences were filtered from the 
dataset for further consideration. Therefore, the search for 2674 protein 
ids resulted in 2671 protein sequences. Furthermore, the following 
filtering strategies were adopted to obtain a good quality train-
ing/validation dataset: (i) filter sequences less than 50 amino acid long; 
(ii) filter sequences containing keyword “alternate” under disulfide la-
bels as it was seen that the same residue was labeled to form a disulfide 
bond with multiple other cysteines within the sequence which could 
mislead the learning algorithm; (iii) filter sequences not containing at 
least one disulfide bond; (iv) filter sequences containing non-standard 
amino acids and (v) filter sequences which contain “?” or “>” char-
acter instead of the residue index of the disulfide bonding cysteine. This 
resulted in 2276 protein sequences, and we call this set “Set-A.” 

Next, we downloaded 4171 protein sequences containing disulfide 
bonds of any experimentally validated type and sequence length < 5000 
from the UniProt database. As employed above, a similar filtration 
strategy was used to obtain a good quality sequence of 3474 proteins and 
we call this set “Set-B.” Next, the sequences from Set-A, which are 
common to Set-B, were removed from Set-A. This resulted in 49 se-
quences in Set-A. We also noted that the dataset prepared by Niu et al. 
consists of homologous sequences. The presence of homologous se-
quences in the dataset could lead to the design of the biased predictive 
model. Thus, we utilized BLASTCLUST (Camacho et al., 2009) to cut off 
those sequences that have ≥ 25 % sequence identity to any other in 
Set-A. This step yielded 33 proteins in Set-A. Likewise, we again used the 
BLASTCLUST to cut off those sequences that have ≥ 25 % sequence 
identity to any other in Set-B, which yielded 1859 proteins. Finally, the 
sequences in Set-A and Set-B were combined, and the BLASTCLUST was 
used again to remove those sequences that have ≥ 25 % sequence 
identity to any other in this combined set. A final dataset, called 
DBD1866, which consists of 1866 non-homologous protein sequences, is 
obtained through this process. The DBD1866 consists of 23187 cysteine 
residues, of which 16104 are disulfide bonding cysteines, and the 
remaining 7083 are non-disulfide bonding cysteines. We took all 16104 
disulfide bonding cysteines and 7083 non-disulfide bonding cysteines as 
positive and negative samples, respectively, to predict the binding state 
of individual cysteines. 

Moreover, we calculated all cysteine pairs within each sequence for 
the prediction of disulfide bonds, resulting in a total of 495570 cysteine 
pairs. Among 495570, 8056 cysteine pairs with known disulfide bonds 
are considered positive samples, and the remaining 487514 cysteine 
pairs are considered the candidates for negative samples. The statistics 
of the sequence distance between paired cysteines shows that for 94.5 % 
of the positive samples, the sequence distance between paired cysteines 
is less than 100 residues. Thus, we selected 8056 cysteine pairs as pos-
itive samples and 40280 (since 5 folds imply 8056 × 5 = 40280) out of 
487514 cysteine pairs with a distance of fewer than 100 residues as 
negative samples to form an imbalanced dataset, which is referred to 
here as Imb-DBD. 

2.2. Feature extraction 

To create an effective machine learning method to predict individual 
cysteines disulfide bonding state and subsequently predict disulfide 
bonds from sequence information only, we use various features derived 

from residue profile, physiochemical profile, conservation profile, 
structural profile, flexibility profile, and position-specific energy profile, 
described next. Fig. 2 shows the encoding of the protein sequence into a 
feature vector utilizing various feature extraction tools. 

2.2.1. Residue profile 
Twenty different standard amino acid (AA) types are encoded using 

20 different numerical values yielding one feature per amino acid. This 
feature is useful to capture the amino acid composition of residues in an 
environment that is local to the cysteine residue. The importance of this 
feature in solving problems in bioinformatics has been demonstrated by 
previous studies (Iqbal et al., 2015; Iqbal and Hoque, 2018; Iqbal and 
Hoque, 2016). Further, we encoded terminal (T) residues, five residues 
from N and C terminal by -1.0 to -0.2, and +0.2 to +1.0, separately with 
a step size = 0.2, giving one feature per residue (Iqbal et al., 2015). 

2.2.2. Physiochemical profile 
The physiochemical properties (PP) of a protein are determined by 

the amino acids’ corresponding properties in it. The effect of physi-
ochemical properties of amino acids on post-translational modification 
(PTM) has been presented by previous studies (Zhu et al., 2010; Niu 
et al., 2010). In this work, five highly compact numeric patterns 
reflecting polarity, secondary structure, molecular volume, codon di-
versity, and electrostatic charge are extracted from (Zhu et al., 2010) 
and used as features to represent the respective properties of each amino 
acid. 

2.2.3. Conservation profile 
The evolutionary conservation profile plays an important role in 

PTM, including disulfide bond formation (Zhu et al., 2010). In this 
study, the protein sequence’s conservation profile is obtained in terms of 
a normalized position-specific scoring matrix (PSSM) from the Dis-
Predict2 program (Iqbal and Hoque, 2016). DisPredict2 internally exe-
cutes three iterations of the position-specific iterative blast (PSI-BLAST) 
(Altschul et al., 1990) against NCBI’s non-redundant database to 
generate a PSSM profile and subsequently normalizes it by dividing each 
value by a value of 9. The PSSM is a matrix of L × 20 dimensions, which 
captures the conservation pattern in multiple alignment and stores the 
scores for each position in the alignment, where L is the length of the 
protein sequence. High scores indicate more conserved positions 
whereas, scores close to zero or negative indicate a faintly conserved 
position. Each amino acid in a protein sequence is encoded by a 20-D 
feature vector in our study. 

The PSSM score was further extended to compute monogram (MG) 
and bi-gram (BG features. The MG and BG features can be utilized to 
characterize a protein sequence segment that can be conserved within a 
fold in terms of transition probabilities from one amino acid to another 
(Sharma et al., 2014). Thus, these features can be useful in recognizing 
the evolutionary folded (ordered) or unfolded (disordered) region of 
proteins that could occur due to the formation of a disulfide bond, which 
motivated us to utilize them as features in this work. We extracted 1-D 
MG and 20-D BG features from the DisPredict2 program and used 
them in this work. 

2.2.4. Structural profile 
Local structural properties such as predicted secondary structure (SS) 

and accessible surface area (ASA) of amino acids have been widely used 
to solve various biological problems, including the prediction of disul-
fide bonds. Here, we used the DisPredict2 program to obtain predicted 
ASA and SS probabilities for helix (H), coil (C), and beta-sheet (E) at the 
residue level. The DisPredict2 program internally uses SPINE-X (Faraggi 
et al., 2012) program to compute ASA and SS probabilities from a given 
protein sequence. In addition, a separate set of SS probabilities for E, C, 
and E at residue level was obtained from BalancedSSP (Islam et al., 
2016) program as it provides a balanced prediction of these SS types. It 
was noted that the BalancedSSP predicts a higher number of beta-sheet 
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correctly compared to the other existing SS predictors. Thus, seven total 
structural properties, including six predicted SS probabilities and one 
ASA per amino acid, were extracted and used as a structural profile in 
this work. 

2.2.5. Flexibility profile 
Protein molecule shows varying degrees of flexibility throughout 

their 3D structures, which is often represented by the fluctuation of the 
Cartesian coordinates of the protein backbone defined by two torsion 
angles Φ and Ψ. The predictor of backbone torsion angle fluctuation has 
been useful in the development of several computational methods and 
predictors of secondary (Islam et al., 2016) and supersecondary (Chen 
and Kurgan, 2012) structure, short and long disordered regions (Zhang 
et al., 2012), protein-peptide binding domain (Iqbal and Hoque, 2018), 
the accessible surface area of protein residues (Tarafder et al., 2018), 
and more. We obtained two backbone angle fluctuation features, dphi 
(ΔΦ) and dpsi (ΔΨ) from the DAVAR (Zhang et al., 2010) program. 

Moreover, intrinsically disordered region (IDR) in protein exhibit 
flexibility due to a lack of fixed or ordered 3D structure. Previous studies 
have demonstrated that IDR contains PTM sites, sorting signals and play 
an important role in regulating protein structures and functions (Wright 
and Dyson, 1999; Liu et al., 2002; Tompa, 2002). In this study, we 
encoded each amino acid in a protein with a disorder probability ob-
tained from a disorder predictor, called DisPredict2, which can predict 
the protein’s disordered regions accurately. 

2.2.6. Energy profile 
Iqbal and Hoque (2016) proposed a novel approach to estimate 

position-specific estimated energy (PSEE) of amino acid residue from 
sequence information alone using contact energy and predicted relative 
solvent accessibility (RSA). They demonstrated that the PSEE helps 
identify the structured and unstructured or intrinsically disordered re-
gions of a protein. Furthermore, PSEE can also be used to detect the 
existence of functional binding regions of a protein. Due to its experi-
mentally proven potential in solving several biological problems, we 
used the PSEE score per amino acid as a feature in our study. 

2.2.7. Distance profile 
Through an optimal feature selection using the mRMR technique, 

Niu et al. demonstrated that the sequence distance between the paired 
cysteine sites plays a significant role in intra-chain disulfide bond pre-
diction. Thus, we use sequence distance between paired cysteines as one 
of the features in our study. 

2.3. Feature window selection 

Here, we applied a widely used feature windowing technique to 
include the neighboring residue features with the features of the 
cysteine site to train the predictor. We examined a suitable size of the 
sliding window that determines the number of residues around a target 

cysteine residue, which can mediate the interactions between the pair-
ing cysteines. We designed several models with different window sizes 
(ws) (1, 3, 5, and so on). The ws of 1 indicates no features from neigh-
boring amino acids will be included with the features of the cysteine site. 
Whereas, the ws of 3 indicates that the features of one amino acid before 
and after the cysteine site will be included with the features of the 
cysteine site to train the predictor. 

2.4. Feature space 

A slightly different set of features were used for individual cysteine 
bonding state prediction and disulfide bond prediction. Further, the 
difference in the number of features comes from the windowing of the 
features. The feature space for individual cysteine bonding state pre-
diction and disulfide bond prediction are discussed in detail below. 

2.4.1. For cysteine bonding state prediction 
Features including 1 terminal indicator, 20 PSSM scores, 1 MG score, 

20 BG score, 6 SS probabilities, 1 ASA, 1 ΔΦ, 1 ΔΨ, 1 disorder proba-
bility, 1 PSEE score, totally 53 features were used for cysteine site. 
Additionally, for each of the neighboring residues, 1 terminal indicator, 
20 PSSM scores, 1 MG score, 20 BG score, 6 SS probabilities, 1 ASA, 1 
ΔΦ, 1 ΔΨ, 1 disorder probability, 1 PSEE score, 1 amino acid type, 5 
physiochemical properties, totally 59 features were used. Thus, for ws of 
1, the cysteine residue is represented by 53 features, whereas, for ws of 3, 
the cysteine residue is represented by 2 × 59 + 53 = 171 features and 
so on. 

2.4.2. For disulfide bond prediction 
The absolute values of the sum and difference of the features 

including 1 terminal indicator, 20 PSSM scores, 1 MG score, 20 BG 
score, 6 SS probabilities, 1 ASA, 1 ΔΦ, 1 ΔΨ, 1 disorder probability 
between each pair of cysteine sites, resulting in a total of 2 × 53 = 106 
features were calculated. Moreover, for each of the neighboring residues 
around the cysteine sites, the absolute value of sum and difference of the 
features including 1 terminal indicator, 20 PSSM scores, 1 MG score, 20 
BG score, 6 SS probabilities, 1 ASA, 1 ΔΦ, 1 ΔΨ, 1 disorder probability, 1 
PSEE score, 5 physiochemical properties, resulting in a total of 
2 × 58 = 116 features were obtained. Further, the absolute values of the 
sum and difference of the individual cysteine bonding probabilities were 
obtained, which give us 2 features. Finally, the sequence distance be-
tween the paired cysteine sites was included as a feature. Thus, for ws of 
1, the feature vector contains (106 + 2 + 1 = 109) features. For, ws > 1, 
the amino acid type of the neighboring amino acids to both the cysteines 
of the cysteine pair is used as features directly. Thus, for ws of 3, the 
feature vector contains (116 × 2 + 106 + 2 + 1 + 2 = 343) features and 
so on. 

Fig. 2. Illustration of encoding the protein sequence into a feature vector utilizing various feature extraction tools.  
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2.5. Performance evaluation 

To evaluate the performance of our predictor, diSBPred, we applied 
10-fold cross-validation (CV) approach. In a 10-fold CV, the dataset is 
segmented into 10 equal-size parts. While a fold is set aside for testing, 
the rest of the folds are used to train the predictor. This process is re-
petitive until each of the fold is tested once, and subsequently, the test 
accuracy of each fold is combined to find the average (Hastie et al., 
2009). We used various performance evaluation metrics listed in Table 2 
to assess our predictor. Moreover, we used a jackknife validation 
approach to compare our predictor with the existing method. In jack-
knife validation, every sample is tested by the predictor trained with the 
samples’ remaining in the dataset. 

2.6. Stacking framework of disulfide bond prediction 

To develop the disulfide bond predictor(diSBPred), we adopted an 
idea of a stacking based machine learning approach (Wolpert, 1992) 
which, has recently been successfully applied to solve various bioin-
formatics problems (Iqbal and Hoque, 2018; Mishra et al., 2018; Hu 
et al., 2015; Nagi and Bhattacharyya, 2013). Stacking is an 
ensemble-based machine learning approach, which collects information 
from multiple models in different phases and combines them to form a 
new model. Stacking is considered to yield more accurate results than 
the individual machine learning methods as the information gained 
from more than one predictive model minimizes the generalization 
error. The stacking framework includes two-levels of classifiers, where 
the classifiers of the first-level are called base-classifiers, and the clas-
sifiers of the second-level are called meta-classifiers. In the first level, a 
set of base-classifiers C1, C2, …, CN is employed (Džeroski and Ženko, 
2004). The base-classifiers’ prediction probabilities are combined using 
a meta-classifier to reduce the generalization error and improve the 
predictor’s accuracy. To enrich the meta-classifier with necessary in-
formation on the problem space, the base-level classifiers are selected. 
Their underlying operating principle is different from one another 
(Mishra et al., 2018; Nagi and Bhattacharyya, 2013). 

To select the classifiers to use in the first and second level of the 
diSBPred stacking framework, we analyzed the performance of eight 
individual classification methods: i) Random Decision Forest (RDF) (Ho, 
1995); ii) Bagging (Bag) (Breiman, 1996); iii) Extra Tree (ET) (Geurts 
et al., 2006); iv) Neural Network (NN) (McCulloch and Pitts, 1943; 
Newell, 1969); v) Logistic Regression (LogReg) (Hastie et al., 2009; 
Szilágyi and Skolnick, 2006); and vi) K-Nearest Neighbor (KNN) 

(Altman, 1992), vii) Light Gradient Boosting Machine (LightGBM) (Ke 
et al., 2017) and viii) Support vector machine (SVM) (Vapnik, 1995). 
The algorithms and their configuration details are briefly discussed 
below. 

i) RDF: RDF (Ho, 1995) constructs a multitude of decision trees, each 
of which is trained on a random subset of the training data. The sub-set 
used to create a decision tree is constructed from a given set of obser-
vations of training data by taking ‘m’ observations at random and with 
replacement (a.k.a. Bootstrap Sampling). Next, the final predictions are 
achieved by aggregating the prediction from the individual decision 
trees. For classification, the final prediction is made by computing the 
mode (the value that appears most often) of the classes. In our imple-
mentation of the RDF, we used bootstrap samples to construct 1,000 
trees (n_estimators = 1,000) in the forest, and the rest of the parameters 
were set to their default value. 

ii) Bag: Bag (Breiman, 1996) machine learning algorithm operates by 
forming a class of algorithms that creates several instances of a base 
classifier/estimator on random subsets of the training samples and 
consequently combines their individual predictions to yield a final 
prediction. It reduces the variance in the prediction. In our study, the 
BAG classifier was fit on multiple subsets of data using Bootstrap Sam-
pling using 1,000 decision trees (n_estimators = 1,000), and the rest of 
the parameters were set to their default value. 

iii) ET: Extremely randomized tree (ET) classifier (Geurts et al., 2006) 
operates by fitting several randomized decision trees (a.k.a. extra-trees) 
on various sub-sets and uses averaging to improve the prediction accu-
racy and control over-fitting. In our implementation, the ETC model was 
constructed using 1,000 trees (n_estimators = 1,000), and the Gini im-
purity index assessed the quality of a split. The rest of the parameters 
were set to their default value. 

iv) NN: Neural networks (NNs) (McCulloch and Pitts, 1943; Newell, 
1969) are a non-linear statistical data modeling tool also called artificial 
neural networks. They are composed of interconnected nodes that can 
model complex relationships between inputs and outputs. The nodes are 
called artificial neurons, similar to neurons in the human brain. The 
connections are called edges and used to transmit signals to nodes/-
neurons. Neurons and edges typically have a weight that adjusts as 
learning proceeds. Recently, a neural network has been applied to 
massive data sets in a variety of fields such as computer vision 
(Simonyan and Zisserman, 2015), natural langue processing (Devlin 
et al., 2019), and protein structure prediction (Senior et al., 2019) and 
performs very well. We implement a convolutional neural network with 
three convolution layers and two dense layers using the python Keras 
library in our implementation. 

v) LogReg: LogReg (a.k.a. logit or MaxEnt) (Hastie et al., 2009; 
Szilágyi and Skolnick, 2006) is a machine learning classifier that mea-
sures the relationship between the categorical dependent variable and 
one or more independent variables by generating an estimation proba-
bility using logistic regression. In our implementation, we set all the 
parameters of LogReg to their default values. 

vi) KNN: KNN (Altman, 1992) is a non-parametric and lazy learning 
algorithm. Non-parametric means it does not make any assumption for 
underlying data distribution; rather, it creates models directly from the 
dataset. Furthermore, lazy learning means it does not need any training 
data points for a model generation rather uses the training data while 
testing. It works by learning from the K number of training samples 
closest in the distance to the target point in the feature space. The 
classification decision is made based on the majority-votes obtained 
from the K nearest neighbors. Here, we set the value of K to 9 and the rest 
of the parameters to their default value. 

vii) LightGBM: LightGBM (Ke et al., 2017) follows the gradient 
boosting framework that uses tree-based learning algorithms. The al-
gorithm has a faster training speed, higher efficiency, and lower memory 
usage. It also supports parallel and GPU learning and capable of 
handling large-scale data. In our implementation, the LightGBM model 
was constructed using 1000 trees (n_estimators = 1000), and the rest of 

Table 2 
Name and definition of the evaluation metric.  

Name of Metric Definition 

True Positive (TP) Correctly predicted positive samples 
True Negative (TN) Correctly predicted negative samples 
False Positive (FP) Incorrectly predicted positive samples 
False Negative (FN) Incorrectly predicted negative samples 
Recall/Sensitivity/True 

Positive Rate (SN) 
TP

TP + FN  
Specificity/True Negative Rate 

(SP) 
TN

TN + FP  
Fall Out Rate /False Positive 

Rate (FPR) 
FP

FP + TN  
Miss Rate/False Negative Rate 

(FNR) 
FN

FN + TP  
Accuracy (ACC) TP + TN

TP + FP + TN + FN  
Balanced Accuracy (BACC) 1

2

(
TP

TP + FN
+

TN
TN + FP

)

Precision (PR) TP
TP + FP  

F1-score (Harmonic mean of 
precision and recall) 

2TP
2TP + FP + FN  

Mathews Correlation 
Coefficient (MCC) 

(TP × TN) − (FP × FN)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN) × (TP + FP) × (TN + FP) × (TN + FN)

√
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the parameters were set to their default value. 
viii) SVM: SVM (Vapnik, 1995) classifier with RBF (radial basis 

function) kernel operates by maximizing the class-separating hyper-
plane or the margin between the two classes and penalizes the instances 
on the wrong side of the decision boundary. Because SVM simulta-
neously minimizes the empirical classification error (i.e., training error) 
and generalization error (i.e., test error) by maximizing the geometric 
margin of the separating hyperplane, it is regarded as an effective 
technique in hard classification problems, especially in bioinformatics 
and computation biology area. Kernels in SVM classification refer to the 
function that is responsible for defining the decision boundaries between 
the classes. An RBF (radial basis function) kernel is used when the 
boundaries are hypothesized to be curve-shaped rather than straight. 
RBF kernel uses two main parameters, gamma and C that are related to 
the decision region (how spread the region is) and the penalty for mis-
classifying a data point, respectively. It is crucial to identify the proper 
combination of SVM parameters (C and γ) to achieve good classification 
performance. In our implementation, the grid search (Hastie et al., 
2009) technique is used to optimize the RBF kernel parameter γ and the 
cost parameter, C, to achieve the highest 10-fold CV accuracy. 

All the classification methods mentioned above are built using py-
thon’s Scikit-learn, Tensorflow, and Keras library (Pedregosa et al., 
2012). In order to design a stacking framework for diSBPred, we eval-
uated the different combinations of base-classifiers and finally selected 
the one that provided the highest performance. 

The set of stacking framework tested are:  

i SF1: RDF, LightGBM, LogReg, KNN in base-level and LightGBM in 
meta-level,  

ii SF2: ET, LightGBM, LogReg, KNN in base-level, and LightGBM in 
meta-level and  

iii SF3: Bag, LightGBM, LogReg, KNN in base-level and LightGBM in 
meta-level. 

Here, the choice of base-level classifiers is made such that the un-
derlying principle of learning of each of the classifiers is different from 
each other (Mishra et al., 2018). For example, in SF1, SF2, and SF3, the 
tree-based classifiers RDF, Bag, and ET are individually combined with 
the other two methods LogReg and KNN, to learn different information 
from the problem-space. Additionally, for each of the combinations SF1, 
SF2, and SF3, the LightGBM classifier is used both in the base as well as 
in the meta-level because it performed best among all the other indi-
vidual methods applied in this work. While examining the 10-fold CVs 
performance of the above three combinations, we found that the first 
stacking framework, SF2 attains the highest performance based on the 
balanced accuracy. Therefore, we employ four classifiers, ET, LightGBM, 
LogReg, and KNN as the base classifiers and another LightGBM as the 
meta-classifier in the diSBPred stacking framework. Fig. 3 shows the 
proposed stacking framework of the disulfide bond prediction. 

3. Results 

Here, first, we discuss the feature importance for different feature 
profiles and the performance of two different models created using the 
existing NNA (Niu et al., 2013) based method utilizing the features re-
ported in the same work and the features used in this study. Then, we 
present the performance of individual cysteine bonding state prediction. 
Subsequently, we report the disulfide bond prediction performance on 

Fig. 3. Illustrates the prediction framework of the disulfide bond prediction.  
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the Imb-DBD dataset while the predictions from individual cysteine 
bonding states are included as a feature. Finally, we demonstrate the 
comparison of our predictor with the existing NNA based predictor. 

3.1. Feature importance 

To identify the relevance of the features used in our work, we 
implemented the NNA (Niu et al., 2013) based algorithm locally. We 
took 2276 proteins that we obtained after the filtration steps mentioned 
under the Dataset section and further performed BLASTCLUST to 
remove the homologous sequences that have ≥ 25 % sequence identity. 
This filtration yielded 1217 non-homologous protein sequences. Then, 
we took all the cysteine pairs corresponding to these 1217 proteins from 
the original dataset collected from Niu’s work. These 1217 proteins 
consist of 18882 cysteine pairs, of which 3513 were labeled as disulfide 
bonding (positive samples), and the remaining 15369 were labeled as 
non-disulfide bonding (negative samples). Niu et al. considered a 
segment of 9 residues (including cysteine itself in the center, 4 residues 
upstream, and 4 residues downstream) as the mini-environment of each 
cysteine. As in Niu’s work, for the 4 residues upstream and 4 residues 
downstream, we extracted the absolute values of the sum and difference 
of the 20 PSSM score, 5 physiochemical properties, and 1 disorder score. 
Likewise, the absolute values of the sum and difference of the 20 PSSM 
score and 1 disorder score were extracted for the cysteine sites. 

Additionally, the sequence distance between the paired cysteine sites 
was also included as a feature. We refer to these features as feature set 
one (fs1). Subsequently, the fs1 was used to construct a model based on 
the NNA method. On the other hand, for the same dataset, we extracted 
all the features for disulfide bond prediction used in this study (see 
discussion in Section “For disulfide bond prediction”). We refer to these 
features as feature set two (fs2). Next, we used the fs2 to construct 
another NNA based model. The jackknife validation balanced accuracy 
of the two NNA based models (NNA-Model1 and NNA-Model2) con-
structed using the feature sets fs1 and fs2, respectively, are shown in 
Table 3. 

The comparison in Table 3 shows that NNA-Model2 created using the 
fs2 (features proposed in this study) provides a 3.07 % improvement 
over NNA-Model1. This clearly indicates that the features used in this 
study are useful for the prediction of disulfide bonds and results in better 
performance. 

To find out which feature profile contributed most to our proposed 
model’s performance improvement, we calculated the feature impor-
tance for each of the feature profiles using the LightGBM classifier. The 
logic behind choosing the LightGBM classifier is that it performed best 
compared to the rest of the individual classifiers studied in this work. 
Fig. 4 shows the aggregated feature importance for each of the feature 
profiles used for disulfide bond prediction in our work. The number of 
times a feature is used to split the data across all trees in the LightGBM 
(Ke et al., 2017) method is considered as the importance of that feature. 
Moreover, Fig. 4 shows that the conservation profile feature group is the 
most important feature, and the residue profile feature group is the least 
important one. 

In addition, we tested the impact of the incremental addition of 

feature profiles on the performance of the LightGBM classifier. Starting 
with the least important feature group from Fig. 4, which is residue 
profile, we build several LightGBM classifiers by adding one feature 
group in the feature vector at a time through 10-fold cross-validation on 
the benchmark dataset (Table 4). 

Table 4 shows that incrementally adding the feature group into the 
feature vector improves the performance of the LightGBM classifier 
obtained through 10-fold cross-validation on the benchmark dataset. 
The improvement in the performance of the LightGBM classifier ob-
tained by the sequential addition of feature group into feature vector 
indicates that all the features implemented in our study are useful. 
Notably, we can observe that the addition of energy profile features itself 
improved the balanced accuracy from 53.50%–73.11%. Further, we can 
also observe from Table 4 that all the feature profiles have some con-
tributions to achieve the final balanced accuracy of 89.62 %. The out-
comes in Table 4 also suggest that the feature set that includes individual 
cysteine bonding state probabilities provides a 1.89 % improvement in 
balanced accuracy compared to the initial set (residue profile).” 

3.2. Cysteine bonding state prediction 

The information directly related to the bonding and non-bonding 
state of the individual cysteine residues might help improve disulfide 
bond prediction accuracy. Considering the same, we first trained eight 
different machine learning models (LightGBM, KNN, LogReg, Bag, RDF, 
ET, SVM, and NN) to predict the bonding non-bonding state of the in-
dividual cysteine residues. The performance comparison of the indi-
vidual classifiers is shown in Table 5. 

Table 5 shows that the LightGBM is the best performing classifier 
among eight different classifiers implemented in our study in terms of 
balanced accuracy, F1-score, and MCC. So, we developed a LightGBM 
based predictor to predict the bonding state of the cysteine residues. 
Then, the prediction probabilities of the bonding state of the cysteine 
residues were included in the feature set to improve the disulfide bond 
predictor’s performance. To identify the best window size of the fea-
tures, for which the bonding state predictor yields the highest 10-fold CV 
balanced accuracy on the DBD1866 dataset, several LightGBM models 
with different window sizes were created. The performance comparison 
of the models built using different sliding window sizes is shown in 
Fig. 5. 

The results in Fig. 5 show that the balanced accuracy of the cysteine 
bonding state predictor improves with the window size increment, 
which highlights that the inclusion of neighboring residue information 
helps the predictor learn about a target residue. It is also evident from 

Table 3 
Comparison of the two NNA based models constructed using the feature sets fs1 
and fs2 through jackknife validation.  

Metric NNA-Model1 NNA-Model2 (imp. %) 

SN % 43.90 52.60 (19.18 %) 
SP % 87.62 88.63 (1.53 %) 
BACC % 65.76 70.62 (7.39 %) 
ACC % 79.49 81.93 (3.07 %) 

Here, ‘imp.’ stands for improvement. The ‘imp. %’ represents an improvement in 
percentage achieved by NNA-Model2 over the NNA-Model-1. The best score 
values are boldfaced. 

Fig. 4. Feature importance for different feature profiles.  
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Fig. 5 that the balanced accuracy significantly increases from window 
size 1–27. Since the balanced accuracy of the models with higher win-
dow sizes (ws > 27) differ after second or third decimal places, we 
compare the MCC and balanced accuracy to select the window size 31 as 
the best window size for cysteine bonding state prediction. The MCC for 
the model for window sizes 27 and 31 are 0.689 and 0.692, respectively, 
while both the models have the same balanced accuracy of 87.29 %. 

Moreover, Table 6 shows the values obtained for additional perfor-
mance measures while performing the 10-fold CV of the model trained 
with the best window size of 31. This model achieves sensitivity, spec-
ificity, precision, f-measure, MCC, BACC and ACC of 95.30 %, 69.28 %, 
87.58 %, 0.913, 0.692, 82.29 %, and 87.35 %, respectively. The model’s 
sensitivity is significantly high because the number of positive samples 
(counts 16104) in the DBD1866 dataset is 2.274 times higher than the 

Table 4 
Contribution of features on the performance of the LightGBM classifier obtained through 10-fold cross-validation on the benchmark dataset.  

Feature Set SN (%) SP (%) FPR FNR PR (%) F1-score MCC BACC (%) ACC (%) 

Residue profile 5.42 99.60 0.004 0.946 73.08 0.101 0.169 52.51 83.90 
+ Single Cystine Probability 8.68 98.32 0.017 0.913 50.87 0.148 0.157 53.50 83.38 
+ Energy profile 51.04 95.19 0.048 0.490 67.96 0.583 0.521 73.11 87.83 
+ Distance profile 62.92 95.53 0.045 0.371 73.80 0.679 0.624 79.23 90.10 
+ Flexibility profile 67.12 96.60 0.034 0.329 79.80 0.729 0.684 81.86 91.69 
+ Structural profile 73.05 97.29 0.027 0.269 84.37 0.783 0.746 85.17 93.25 
+ Conservation profile 79.84 99.39 0.006 0.202 96.32 0.873 0.856 89.62 96.13 

The best score values are boldfaced. 

Table 5 
Performance of cysteine bonding state prediction model for different classifiers.  

Metric/Methods LightGBM KNN LogReg Bag RDF ET SVM NN 

SN (%) 92.76 91.70 92.08 92.57 93.25 93.11 93.99 91.83 
SP (%) 70.92 54.89 52.29 68.28 67.03 65.95 53.64 55.46 
FPR 0.291 0.451 0.477 0.317 0.330 0.341 0.464 0.445 
FNR 0.072 0.083 0.079 0.074 0.067 0.069 0.060 0.082 
PR (%) 87.88 82.21 81.44 86.90 86.54 86.14 82.17 82.42 
F1-score 0.903 0.867 0.864 0.896 0.898 0.895 0.877 0.869 
MCC 0.663 0.514 0.498 0.639 0.640 0.629 0.543 0.521 
BACC (%) 81.84 73.29 72.19 80.42 80.14 79.53 73.81 73.64 
ACC (%) 86.09 80.45 79.92 85.15 85.24 84.81 81.66 80.72 

The best score values are boldfaced. 

Fig. 5. Performance comparisons of the LightGBM models trained using feature vectors created by applying a sliding window of different sizes. The balanced ac-
curacies of the models for various window sizes are reported. 

Table 6 
Performance of cysteine bonding state prediction model, trained with the best 
window size.  

Metric Model Trained with the Best Window Size 

SN (%) 95.30 
SP (%) 69.28 
FPR 0.307 
FNR 0.047 
PR (%) 87.58 
F-measure 0.913 
MCC 0.692 
BACC (%) 82.29 
ACC (%) 87.35  
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number of negative samples (counts 7083). 

3.3. Disulfide bond prediction 

For the prediction of disulfide bonds, we select the base and meta 
classifier for our stacking method based on the performance of the in-
dividual classifiers. We include the probabilities of the individual 
cysteine bonding state prediction as a feature for disulfide bond pre-
diction. The results of these experiments are discussed below. 

3.4. Selection of classifiers for stacking 

To select the methods to use as the base and the meta-classifiers, we 
analyzed the performance of eight different machine learning algo-
rithms: LightGBM, KNN, LogReg, Bag, RDF, ET, SVM, and NN on the 
benchmark dataset through a 10-fold CV approach. The performance 
comparison of the individual classifiers on the benchmark dataset is 
shown in Table 7. 

Table 7 further shows that LightGBM is the best performing classifier 
among eight different classifiers implemented in our study regarding 
sensitivity, balanced accuracy, FNR, and F1-score. The LightGBM attains 
sensitivity, balanced accuracy, accuracy, FNR, F1-score, and MCC of 
79.77 %, 89.54 %, 96.05 %, 0.202, 0.871, and 0.852, respectively. As 
the dataset is highly imbalanced, we consider balanced accuracy as the 
deciding score as it provides the balanced measure of any predictor 
trained on an imbalanced dataset. Furthermore, it is evident from 
Table 7 that the balanced accuracy of the LightGBM is 19.66 %, 12.14 %, 
0.19 %, 3.84 %, 4.38 %, 8.48 %, and 8.56 % higher than KNN, LogReg, 
Bag, RDF, ET, SVM, and NN, respectively. The greater performance of 
the LightGBM algorithm motivated us to use it both as a base as well as a 
meta-classier and selection of sliding window size in the diSBPred pre-
diction framework. 

To identify the best window size for which the disulfide bonds pre-
diction model yields the highest 10-fold CV balanced accuracy on the 
Imb_DBD dataset, several LightGBM models for different window sizes 
were created. Finally, the LightGBM model that corresponds to the best 
window size for the Imb_DBD dataset was identified. Fig. 6 shows the 
performance comparison of the LightGBM models created using 
different window sizes for the Imb_DBD dataset. 

Fig. 6 illustrates that the LightGBM model evaluated on window size 
13 provides the highest balanced accuracy of 92.66 %. Initially, the 
performance line indicates increasing performance with the window 
size, up to the window size 7. With the window size 9 and 11, the 
model’s performance decreases slightly compared to the model with 
window size 7. However, the next model with window size 13 achieves 
the highest performance. Moreover, the models with window sizes 
larger than 9 show decreasing performance. The corresponding MCC for 
window size 13 is 0.904, which was the highest MCC compared to the 
other models. Thus, we select the window size 13 to train the stacking 
based model with LightGBM as the meta classifier on the Imb_DBD 
dataset for disulfide bond prediction. 

We adopted base-classifier selection guidelines based on different 

underlying principles to select the classifiers to be used at the base-level. 
Therefore, we used KNN and LogReg as two additional classifiers at the 
base-level. Then, we added a single tree-based ensemble method out of 
three methods, RDF, Bag, and ET, at a time as the fourth base-classifier 
and designed three different combinations of stacking framework, 
namely SF1, SF2, and SF3. The performance comparison of SF1, SF2, and 
SF3 stacking framework on the benchmark dataset using 10-fold CV is 
presented in Table 8. Table 8 demonstrates that SF2 outperforms both 
SF1 and SF3 in the case of balanced accuracy, FNR, F1-score, MCC, and 
ACC. Hence, we select SF2, which includes ET, LightGBM, LogReg, and 
KNN as base-classifiers and another LightGBM as a meta-classifier, as 
our final predictor. 

Here we compare the performance of the proposed method diSBPred 
with an existing NNA (Niu et al., 2013) method proposed by Niu et al. 
For the sake of appropriate comparison, we implemented the NNA 
approach locally by removing the inconsistencies in the dataset pro-
posed by Niu et al. For the details of the discrepancies, refer to the 
Dataset section. The performance comparison of the proposed predictor 
diSBPred with the existing NNA method is presented in Table 9. 

Table 9 shows that diSBPred achieves an improvement of 102.85 %, 
13.38 %, 43.25 %, and 22.82 % based on SN, SP, BACC, and ACC over 
the NNA method, respectively. Therefore, the proposed approach can 
predict a greater number of disulfide bonding and non-bonding pairs 
correctly compared to the existing state-of-the-art method. Tables 3 and 
9 show that our method is superior to both the NNA-based models – 
NNA-Model1 that utilizes the original features proposed by Niu et al.; 
and NNA-Model2 that utilizes the better features proposed in this work. 
These results allow us to conclude that our proposed method, the 
diSBPred, significantly outperforms the current state-of-the-art method. 
Additionally, these outcomes help us summarize that the proposed 
approach can be effectively applied to annotate disulfide bonding resi-
dues of the sequence whose structure is unknown. 

Moreover, the prediction from diSBPred can be used in the three- 
dimensional structure prediction of proteins to significantly reduce the 
conformational search space. The reduction can be achieved by 
imposing the geometrical constraints on the degree of freedom of the 
protein’s backbone. Further, the predicted bonding information can be 
incorporated in the applied energy function to rank the structure high 
that matches the predicted disulfide bonding orientation. 

4. Conclusions 

We proposed a sequence-based predictor of disulfide bonds using a 
stacking based machine learning method. To train and validate the 
proposed approach, we collected a dataset of protein sequences, whose 
corresponding high-resolution structures are experimentally validated, 
and each structure has at least a single disulfide bond. For the accurate 
prediction of the disulfide bond, the computation is carried out in two 
stages: first, individual cysteines are predicted as either bonding or non- 
bonding; second, the cysteine-pairs are predicted as either bonding or 
non-bonding by incorporating the individual cysteine bonding predic-
tion probability as a feature in the second tier. For the individual 

Table 7 
Performance of disulfide bond prediction model for different classifiers.  

Metric/Methods LightGBM KNN LogReg Bag RDF ETC SVM NN 

SN (%) 79.77 51.17 62.15 79.34 72.67 72.07 66.97 67.35 
SP (%) 99.30 98.50 97.55 99.40 99.79 99.50 98.11 97.61 
FPR 0.007 0.015 0.025 0.006 0.002 0.005 0.019 0.024 
FNR 0.202 0.488 0.378 0.207 0.273 0.279 0.330 0.326 
PR (%) 95.82 87.18 83.53 96.38 98.55 96.64 87.61 84.95 
F1-score 0.871 0.645 0.713 0.870 0.837 0.826 0.759 0.751 
MCC 0.852 0.623 0.675 0.853 0.822 0.808 0.727 0.715 
BACC (%) 89.54 74.83 79.85 89.37 86.23 85.78 82.54 82.48 
ACC (%) 96.05 90.61 91.65 96.06 95.27 94.93 92.92 92.57 

The best score values are boldfaced. 
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cysteine bonding state prediction, the dataset containing all the bonding 
and non-bonding cysteines is used. Furthermore, for the prediction of 
disulfide bonds, we constructed a benchmark dataset containing 
bonding and non-bonding pairs in the ratio of 1:5. We used features such 
as amino acid residue profile, physiochemical profile, conservation 
profile, structural profile, flexibility profile, and energy profile for in-
dividual cysteine bonding state prediction. Moreover, the distance be-
tween each pair of cysteines is also used for the disulfide bond 
prediction. 

The proposed approach achieved a prediction balanced accuracy of 
82.29 % for individual cysteine bonding state prediction and 94.20 % for 
disulfide bond prediction. Also, the comparison of the proposed 
approach with the existing NNA based approach shows that the 

proposed predictor achieves an improvement of 43.25 % based on BACC 
(prediction balanced accuracy). These results confirm the robustness of 
the proposed approach. Moreover, comparative results highlight that 
the proposed approach significantly outperforms the existing method. 
Therefore, our approach can be used to effectively annotate the disulfide 
bonding residue of the protein sequence whose structure is unknown. 
Besides, the predictor can be useful in reducing the conformational 
search in the prediction of the three-dimensional structure of the protein 
by imposing geometrical constraints on the protein-backbone. 
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Fig. 6. Performance comparison of the LightGBM models trained using a feature vector created by applying a sliding window of different sizes. The 10-fold CV 
balanced accuracy of the models on the Imb_DBD dataset for various window sizes is reported. 

Table 8 
Comparison of different stacking framework with a different set of base- 
classifiers on the benchmark dataset through a 10-fold CV.  

Metric/Methods SF1 SF2 SF3 

SN (%) 88.94 89.05 89.01 
SP (%) 99.37 99.34 99.33 
FPR 0.006 0.007 0.007 
FNR 0.111 0.109 0.110 
PR (%) 96.59 96.44 96.40 
F1-score 0.926 0.926 0.926 
MCC 0.913 0.913 0.912 
BACC (%) 94.16 94.20 94.17 
ACC (%) 94.16 97.63 97.61 

Best score values are boldfaced Performance comparison with the existing 
approach. 

Table 9 
Comparison of the proposed method diSBPred with the existing NNA method.  

Metric/Methods NNA diSBPred (imp. %) 

SN (%) 52.60 89.05 (102.85 %) 
SP (%) 88.63 99.34 (13.38 %) 
BACC (%) 70.62 94.20 (43.25 %) 
ACC (%) 81.93 97.63 (22.82 %) 

Here, ‘imp.’ stands for improvement. The ‘imp. %’ represents an improvement in 
percentage achieved by diSBPred over the NNA. The best score values are 
boldfaced. 
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