
Remote Sensing Applications: Society and Environment 22 (2021) 100513

Available online 20 April 2021
2352-9385/© 2021 Elsevier B.V. All rights reserved.

A machine learning approach to detecting cracks in levees and floodwalls 

Aditi Kuchi b, Manisha Panta a,b, Md Tamjidul Hoque a,b,*, Mahdi Abdelguerfi a,b, 
Maik C. Flanagin c 

a Canizaro/Livingston Gulf States Center for Environmental Informatics, University of New Orleans, New Orleans, LA, 70148, USA 
b Department of Computer Science, University of New Orleans, New Orleans, LA, 70148, USA 
c US Army Corps of Engineers, New Orleans District, LA, USA   

A R T I C L E  I N F O   

Keywords: 
Machine learning 
Stacking 
Object detection 
Levee cracks 
Levee monitoring 
Deep learning 
Support vector machine 

A B S T R A C T   

Levees and floodwalls are structures that often protect larger inhabitants. These structures disintegrate over time 
due to the effect of harsh weather, subsidence of land, seepage, development of cracks, toe erosion, sand boils, 
and levee sections sloughing off. Due to these threats, levees and floodwalls require constant monitoring and 
maintenance. This paper describes and compares different approaches for detecting cracks in the concrete toe, 
levees crown, and other general areas of levees and floodwalls using digital images. The image dataset is sourced 
from real data and manually collected and annotated as needed, creating a new dataset of images that can be 
used in further research. We use object detection methods and machine learning to detect cracks, which have 
distinctive characteristics from the rest of the surrounding images. We analyze different algorithms to identify 
the best one for detecting cracks. We study stacking (85% accuracy) latest deep learning techniques (90.90% 
accuracy). There is information about how we select and extract the best features from each image, which can be 
used with commonly known machine learning methods such as SVM, GBC, etc. We also explain the reason for 
100% accuracy when using the Viola-Jones method for detection.   

1. Introduction 

Levees are structures constructed along natural water bodies to stop 
the flooding of low-lying areas. These artificial structures are raised 
above the water level of the water-body they surround. These structures 
keep the water contained and prevent flooding of the surrounding areas, 
which might be of significant residential or commercial value. 

Like most human-made structures, there is the threat of these levees 
degrading over time. Among several causes of failure of levees, such as 
severe weather, development of sand boils, subsidence of land, seepage, 
leaks, and others, the development of cracks is only one of them. Mostly, 
the combination of one or more of these faults causes catastrophic 
failure of the levee system. The presence of cracks in the concrete of 
these structures can indicate impending structural failure. Levee failure 
can result in a lot of damage to property and life (Agency, 2015; Maryan 
et al., 2019). 

The crack development mechanism is a complicated process. It is 
broadly initiated because of the surface’s shrinkage-expansion due to 
dry-wet cycles on the levee material (sand, clay-like soil, concrete, etc.). 

Even though the levee appears to be stable, the excessive cracking needs 
to be corrected timely after proper monitoring. The monitoring of these 
problems is currently done manually or by flying drones only to collect 
images (NobregaJamesGokaraju et al., 2013; Stateler, 2016). Using 
drone images and videos to automatically identify cracks is expected to 
substantially reduce the time and cost of assessing levees for the pres-
ence of cracks. This study aims to automate this process by testing and 
utilizing the best machine learning model to accurately detect cracks 
near these structures. However, the most significant issue we face while 
trying to detect cracks is collecting images. Most machine learning 
models train on a curated dataset with multiple different images of the 
problem and then are tested on a smaller and significantly different test 
dataset. Any slight change in the lighting conditions, angles, etc., will 
cause the training data to vary vastly. In this experiment, however, we 
have taken care to modify and augment the collected data suitably. This 
has been elaborated in the subsequent sections dealing with the data and 
methods. 

The original image dataset of cracks over and around levees has been 
collected over the years by the field inspectors from the army corps. 
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After carefully selecting 50 images with cracks from the dataset and 
augmenting the data synthetically, we have obtained 12,800 images. 
The next step is the selection of models. We have chosen to use one of the 
decade-old but popular Viola-Jones (Wang, 2014; Viola and Jones, 
2004) algorithms for object detection, two latest deep learning frame-
works for object detection, Single Shot MultiBox Detector (Wei Liu et al., 
2015) and FasterRCNN (Ren et al., Sun), some popular non-deep 
learning methods such as Support Vector Machines, Gradient Boosting 
Classifier, and others along with a Stacking (Mishra et al., 2019; Flot 
et al., 2019) approach to compare their performances. The prediction 
results of models give us adequate information on how the different 
models perform on the given dataset, selecting the best one for 
deployment. A preliminary version of our work can be found here (Kuchi 
et al., 2020). 

In this paper, the primary focus is on using the custom-built dataset 
from levee images and testing each of the methods above. Additionally, 
we provide reasons as to why and how they work for our current dataset. 
We work on extracting and determining which features of the images 
provide us with the best results and reasons why they perform well. 
Then we use the best method that might work best for real-time detec-
tion of cracks that can be deployed easily on a small device like a drone. 
Finally, the performances are evaluated, and the results are analyzed. 

2. Background and related work 

This section contains a background of cracks near levees, the way 
they impact levees, and the relevance of this project in the object 
detection research field. First, we study the significance of this issue, 
collect the data, augment it, and frame the right questions to use the 
appropriate parameters to measure the success of the models. 

Coastal Louisiana lost approximately 16 square miles of land be-
tween 1985 and 2010 (Couvillion et al., 2011). Over 50 failures of levees 
and floodwalls protection in New Orleans occurred after hurricane 
Katrina in 2005. These failures caused 80% of the city’s flooding. Such 
events show us that levee and dam failures can be catastrophic. There is 
enormous potential for significant property damage, loss of life, dam-
ages to vegetation and land. Among several causes of failure of levees, 
such as severe weather, development of sand boils, subsidence of land, 
seepage, leaks, and others, the development of cracks is only one of 
them. The crack development mechanism is a complicated process. It 
broadly initiates because of the shrinkage-expansion of the surface due 
to dry-wet cycles on the levee material (sand, clay-like soil, concrete, 
etc.). 

Cracks in the levee system can develop either along the levee’s crest, 
on the concrete floodwalls, on the levee slopes, or even near and around 
the levee. The cracks have irregular structures and do not have a specific 
pattern. They visually look like a dark portion or dark, jagged line in an 
otherwise lighter area. The images have different cracks, such as hairline 
fractures, 1/8th inch cracks, cracks with spalling, exposed rebar, and 
crack holes. However, the dataset we have used in this study was 
collected and classified as cracks by the expert levee inspectors. Based on 
the expert opinion, we proceeded with further computational experi-
ments on a small set of datasets. 

Even though the levee appears to be stable, the excessive cracking 
needs to be corrected timely after proper monitoring. Due to the 
described adverse effects of levee failure, close monitoring of cracking 
near the levee’s concrete and surrounding area is of the utmost impor-
tance (NobregaJamesGokaraju et al., 2013; SchaeferTimothy Robbins, 
2017). So, this research’s primary objective is to detect cracks in levees 
to identify their locations and support respective authorities to make a 
proper decision of maintenance to prevent the failure of levees due to 
cracks. With modern object detection methods, we can predict the exact 
area where the levee’s crack is present so that it can be looked at and 
repaired by the personnel monitoring the site. 

2.1. Related work and novelty of the contribution 

There have been research-papers focusing on the detection of cracks, 
for example, in concrete pipes (Couvillion et al., 2011; SchaeferTimothy 
Robbins, 2017), crack detection on pavements (Salman et al., 2013), 
etc., with high accuracies. However, our paper deals with the discovery 
of cracks in a niche area of the levee system, which requires a precise 
collection of data and pre-processing. This study’s machine learning 
techniques required a different set of parameters to be taken into ac-
count. The image data collection and manipulation were influenced by 
factors such as the lighting conditions, precise cropping of the image, 
image size, and regularity of sizing across all the images in the dataset. 
So, Another novel contribution is the introduction of the stacking 
method to detect cracks in levees. With this research, we propose a 
practical way (using Stacking) of object detection for images and 
contribute to the creation of an entirely new dataset that can be further 
used in the research for crack detections. 

2.2. Object detection, computer vision and its relevance to crack detection 

Object detection using machine learning is a popular approach to 
find regions of interest in an image. Object detection is a combination of 
the two – machine learning and computer vision. The study of computer 
vision is that of manipulating image data (Sinha, 2006). Algorithms 
extract certain essential features from the set of input images and pass 
them onto machine learning models, which are then used in model 
training to identify the relevant features in new test images. These re-
gions that are analyzed and detected are called regions of interest (ROI). 
Object detection uses object detection to identify the target object in 
such ROI and draw a bounding box around it. Object detection could be 
treated more like an image classification problem, in the sense that the 
models can be trained to quickly recognize whether or not there is a 
positive instance in the image – and if there is, draw a bounding box 
around it. Here in this study, we classify whether there are cracks in the 
images, and if there are cracks, detecting the location of cracks. So, there 
are two tasks to perform - image classification and crack localization. 
Image classification deals with identifying a single object’s label in an 
image, and object localization includes drawing the bounding box 
around the labeled object. 

The application of machine learning in the area of object detection 
has been successfully presented in the geospatial domain. Several 
studies in the geospatial domain in which the latest ones include 
research works done in (Maryan et al., 2019; Kuchi et al., 2019; Frey 
et al., 2019; Gopalakrishnan et al., 2018). Computer Vision methods 
have been prevalent mostly in the automatic detection of cracks on the 
concrete surface especially in the civil structure damage assessments 
(Gopalakrishnan et al., 2018). Many of these methods are based on 
image processing technology, machine learning algorithms, or deep 
learning. Several research on structural damage detection have been 
proposed in the literature; however, not many have been implemented 
in the problem domain of crack detection on the levee system. Un-
doubtedly, research works to detect cracks on the concrete surface and 
even in dams using the latest object detection techniques such as 
region-based object detection and object segmentation exist. However, 
these methods require computationally massive resources and take a 
longer time to train. 

Cracks in levees are represented as a darker portion or a dark, jagged 
line in an otherwise lighter area. They also have some characteristic 
features that make object detection methods for cracks particularly well 
suited. Because of the unique features of a crack that a machine learning 
model can pick up on, the training set of images needs to be large and 
full of different variations. For example, the contrast between the 
brighter concrete and the dark portion of the crack must be present 
under many different lighting conditions, angles, and different sur-
rounding areas and textures. Many popular object detection algorithms 
exist to detect different classes of objects, some of the most common 
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ones being humans (pedestrians) (DalalBill, 2005), faces (Wang, 2014; 
Viola and Jones, 2004), cars (Wei et al., 2013), etc. Similarly, we intend 
to use some selected object detection methods to detect cracks near flood 
protection structures’ concrete structures. 

Object detection has become increasingly popular in real-world ap-
plications. However, most of these detections are concentrated on well- 
defined and characteristic objects like cars and humans. Applying these 
algorithms in uncertain and more natural areas such as for detecting 
sand boils (Szeliski, 2010) and cracks near levees, rip currents (Maryan 
et al., 2019), etc., could be very hard to perform. Therefore, this research 
is a fascinating and thoroughly manual process, where we make sure 
that most of the data collected are as clear as possible. The synthetic data 
is as regular and natural as possible to create realistic samples. 

Crack detection using machine learning approaches will require a 
vast dataset of input images, like any other machine learning problem. 
The dataset consists of positive training samples containing cracks in 
different settings and negative training samples that do not contain any 
crack but are still within the context of the levee system. This is referred 
to as the training dataset. Note that the training data must consist of 
positive and negative images to teach the machine learning models what 
exactly a crack is and what is not. We will also require a selected subset 
of images that are not used in training to test the accuracy of the model’s 
predictions and other parameters. This is referred to as the test dataset. 

To perform object detection on cracks, distinct groups of data called 
positive samples and negative samples are required. A positive image 
contains the image of the kind of object we are interested in detecting. In 
this case, levee cracks. These are carefully cropped to include only the 
area of interest: a crack and the surrounding texture. We also require 
negative images that are just any images within a context that do not 
contain any instance of levee cracks in them. In this case, it means that 
images such as satellite shots near water bodies, dams, etc., can be used. 
These rules of data collection must be followed as closely as possible. We 
must be as thorough as possible in making sure that there is no instance 
of a positive sample within the negative data. This is important to avoid 
because having positive instances within the negative image data will 
confuse the machine learning model and lower accuracy. 

3. Data and methodology 

This section describes the creation of the dataset, all the machine 
learning methods we use, and express their underlying principles. We 
also explain the rationale behind the choice of each machine learning 
method we use. Further information about each method and its in-
tricacies that contribute to the success of their usage can also be found in 
this section. 

Currently, field inspectors from the Army Corps of Engineers drive 
along the levees and look for problems. They perform a manual survey of 
levees, and if they see any issue, they’ll take a picture with their phone 
or a high-quality camera, and it gets uploaded into their system. For this 
study, the entire dataset was created from scratch using images of cracks 
collected over the years by the field inspectors from the US Army Corps 
of Engineers in the New Orleans area. 

The cracks we have considered in our work are along the crest of the 
levee, on the concrete floodwalls, on the levee slopes, an embankment of 
the levee. The paucity of cracks on the crest, slopes, and embankment of 
the levee was a challenge for us. So, our dataset comprises the majority 
of concrete cracks. These images were manually cropped to ensure that 
the most relevant part, which is the crack in the image, appears most 
prominently in the center: a crack and the surrounding texture. The 
number of images created in this way was limited in number, but more is 
required to train a machine learning model. Since one of the significant 
challenges in object detection using a convolutional neural network is 
the lack of large annotated datasets, superimposition techniques to 
create synthetic composite images have been proposed and applied in 
the literature (Dwibedi et al., 1301; Georgakis et al., 2017; Gupta et al., 
2315). There are studies where creating realistic patch-level dataset by 

merely placing the objects on the possible backgrounds. By placing the 
positive crack images in the right environment (negative background 
images), we add the context of the real-world and allow CNN to learn the 
surrounding and object features. We know that the generated synthetic 
photos might not exactly represent the real data, but the synthetic data 
mimics the real-world scenario. Hence, we augment the dataset by 
synthetically creating more samples. These samples are created by 
superimposing small crops of the positive samples onto the negative 
images to create more synthetic positive samples. We use OpenCV to 
perform this operation. Each of the original positive images is rotated 
and resized automatically by the OpenCV create samples utility. The 
negative images were collected from ImageNet (Deng et al., 2009) and 
OpenStreet Maps (Coast, 2019). There is no centralized or easy access 
data available for analysis of levees, dams, and floodwalls. Hence, most 
of the collection was done manually. By doing most of the collection and 
cleaning of the data, we contribute to building a useful new dataset for 
the community, which can further be used in more research. 

The data collection and cleaning include the following steps: First, 
we go through all the available images, and we crop and slice the rele-
vant areas of the image that contain cracks. These cropped images are 
then resized. The total number of positive samples are 50 of pixel-size 50 
X 50. The negative background images are 6502 in a total of size 150 X 
150. Then we synthetically augment the images and create more posi-
tive samples by superimposing the positive images over resized (150 X 
150) negative images. This operation was done using the OpenCV to 
create samples utility, which automatically changes the source image in 
a small way and pastes it onto the negative images. This resulted in the 
creation of around 12,800 images to be used in training. 

The methods used include Viola-Jones detection, which uses Haar 
features to classify the presence of cracks and generate appropriate 
bounding boxes, non-deep learning techniques such as SVM, GBC, kNN, 
Stacking, and the Single Shot MultiBox Detector (SSD). In order to use 
the images for deep learning, they need to be manually annotated. To 
use these images with non-deep learning techniques, the custom features 
need to be extracted from each image and then passed onto the indi-
vidual models. 

3.1. Models used and their intricacies 

Viola-Jones Object Detector: Viola-Jones object detector algorithm 
(Wang, 2014; Viola and Jones, 2004) is an old state-of-the-art object 
detection framework that quickly gives decisions based on its most 
relevant object features in an image. Further, it is quite powerful and 
still has excellent notable performance in rapid real-time object detec-
tion. The Viola-Jones object detector algorithm uses the AdaBoost al-
gorithm to quickly reject all the sub-windows categorized as negative 
and pass all the positive images to the next step repetitively. We used an 
OpenCV and Python implementation to train the haar classifier and haar 
cascades. The cascade is trained for 25 stages. However, it exited at stage 
17. We tested multiple stages of the haar cascade and decided to use 
stage 15 because of its good performance. 

The code to calculate the accuracy of the Viola-Jones Detector is 
custom and is based on categorizing the bounding box results, as 
explained in Figs. 1–3. We categorize the detections into four sets, true 
positive, true negative, false positive, and false negative. Based on the 
accuracy calculation formula, we created a custom code that uses the 
info files created by OpenCV during the synthetic sample creation and 
the classifier’s predictions to compare and categorize each of the pic-
tures into one of the four groups. The accuracy formula has been 
formulated below:  

GT = Ground truth obtained from “info.lst” file which is created during cre-
atesamples in OpenCV                                                                            

P = Predicted (Predictions from the haar classifier)                                      

If area (GT) = 0 and area (P) = 0 then the TN                                           
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IF area (GT) = some value and area (P)some value then TP                          

If area (GT) = 0 and area (P) = some value the FP                                      

IF area (GT) = some value and area) = 0 then FN                                      

Accuracy=
(TP + TN)

(TP + TN + FP + FN)
(1) 

Non-deep learning and Stacking: We require manual extraction of 
the features from each image and determine which ones might perform 
best in the given case to use non-deep learning methods such as Support 
Vector Machine (SVM), Gradient Boosting Classifier (GBC), Random 
Decision Forest (RF), Extra Tree Classifier (ET), Logistic Regression 
(LogReg), K-Nearest Neighbors (kNN), Xtreme Gradient Boosting 
(XGBC), and Bagging. Therefore, we chose several different features that 
provide the best results in combination with each other. They are Hu 
moments (7 features), Haralick features (13 features), Histograms (32 
features), Histogram of Oriented Gradients (HOG) (648 features), Canny 
(1986) features, and Gabor (FogelSagi, 1989) features. Haralick features 
are textural features that are useful in image classification. For satellite 
images of cracks near levees, these features isolate the region of interest. 
The basis for these features is a gray-level co-occurrence matrix. Hu 
moments are a list of 13 features and capture important information 
about segmentation within the image. Please refer to Table 1 for further 
analyses of Hu moments. As for the histogram, we use a 32 bin value 
histogram as a feature to capture the gray values of the image. HOG 
features are top-rated in computer vision to perform the task of object 
detection (DalalBill, 2005). These features help to observe the changes 
in shapes and object appearances in the image. Gabor features are 
especially useful in texture analysis and extract boundaries based on 
textures in an image. Canny features extract edge information from the 

image. 
Since Canny and Gabor’s features are defined as matrices, we chose 

to derive additional features such as the sum along axes and total sum 
from them and include them as individual features. A feature collection 
is done in Python, with the help of different open-source image pro-
cessing libraries. All implementations of machine learning models used 
Python and related machine learning libraries like Scikit-Learn (Pedre-
gosa et al., 2011), Mahotas (Coelho, 2013), Pillow, and other relevant 
dependencies. 

Stacking involves training each machine learning detector individ-
ually first. Stacking brings together all the methods in the changes-based 
layer, adds the detections’ probabilities as additional features, and 
passes it on to the meta classifier, making the final predictions. The 
stacking model’s performance will always be higher or at least equal to 
the individual methods, or at its worst, the same as the most top- 
performing single method. This method requires creating a feature file 
containing row-wise, the images with their class labels, and column- 
wise, their features. The creation of the feature-file results in an exten-
sive matrix, which is then passed to the model as input. Stacking based 
machine learning approaches (Wolpert, 1992) have proven to be very 
high-performing in various applications (Maryan et al., 2019; Flot et al., 
2019; Russakovsky et al., 2015; Iqbal and Hoque, 2018; Gattani et al., 
2019). This provides us a strong base to work towards developing a levee 
crack predictor with high accuracy. 

The highlighted values help distinguish between the images better. 
The images below are representations of what positive and negative 
samples mean. The Hu feature (Maryan et al., 2019) has a perfect 
distinction between positive and negative images. Hu (Viola and Jones, 
2004) also contributes significantly to this differentiation. The values for 
positive samples are high, while the negative samples are low and 
negative. 

Single Shot MultiBox Detector (Deep Learning): The Single Shot 

Fig. 1. Three examples of synthetically created cracks by superimposing positive samples onto negative images. Filed inspectors collect the above images, and the 
negative background images are from OpenStreetMaps. The average width of cracks on the positive images is 0.9 inches. All images were cropped manually to ensure 
that the cracks were prominent. 

Fig. 2. Examples of Haar features that are used in the Viola-Jones classifier.  
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MultiBox detector (Wei Liu et al., 2015; LiuDragomirErhan et al., 2016) 
is a modern deep learning method for object detection, which has 
become increasingly popular because of the availability of pre-trained 
nets that can be frozen. New classes of objects can easily be trained on 
top of these frozen layers. The entire training process is fast, and it also 
can run efficiently on smaller machines with lower processing power. 
We used a PyTorch implementation (Gao, 2019) of the neural net with 
some changes to the number of classes, the calculation of accuracy, and 
other relevant parameters to make our detections. Before this, however, 

the primary time-consuming process here is the pre-processing and 
annotation of the data. Each positive image must be annotated 
manually. 

Moreover, to do so, we have used an open-source annotation GUI 
called the BboxLabel tool available on Github. This saves the annota-
tions in the PASCAL VOC (XML) format used by most deep learners. The 
Single Shot MultiBox Detector (SSD) uses MobileNetV2 as its feature 
extraction layer. We use a Pytorch based network and tune it further to 
help with accuracy. This method improves many modern deep learning 

Fig. 3. An illustration regarding how the Viola-Jones classifier uses the particular Haar feature to segregate positives from negatives. The AdaBoost algorithm is used 
internally to weed out all the possible negative images in the initial stages. The next step contains only positives upon which further Haar features collections are used 
to determine if a crack exists or not. 

Fig. 4. Predictions by SSD model on the test images. (a), (b), (c), and (d) are examples of predicted test images with a bounding box locating a crack in images. Here, 
r: ‘value’ represents the confidence of the object inside the bounding box being crack. 

A. Kuchi et al.                                                                                                                                                                                                                                   



Remote Sensing Applications: Society and Environment 22 (2021) 100513

6

techniques like the You Only Look Once (YOLOv3), a prevalent option to 
detect objects like vehicles. SSD, however, is very powerful and fast. It 
can map the region of interest in a single shot. The feature extraction 
layer can extract all the useful features at multiple scales and pass them 
onto the next layers, which then train these learned features. The output 
is an image with a bounding box drawn around it. 

The benefit of using an SSD is that it uses MobileNetV2, a very 
lightweight net capable of running smoothly on edge devices such as 
smartphones and drones, which makes it ideal to be used on a drone for 
real-time detection. 

Faster R–CNN (Deep Learning): The region-based convolutional 
neural network (R–CNN) is one of the leading contemporary approaches 
for object detection. In this approach, a pre-trained convolutional neural 
network is used as a feature extraction method. With the evolution of 
RCNN based methods, Fast R–CNN (Girshick, 1440) and Faster R–CNN 
(Ren et al., Sun) are the popular meta architectures approaches to 
perform object detection. Faster R–CNN is the combination of Fast 
R–CNN and Region Proposal Network (RPN). In Faster R–CNN, instead 
of CPU based selective search process to generate Regions of Interests 
(ROI) used in Fast R–CNN, the architecture implements a CNN based 
Region Proposal Network (RPN). 

In the Faster R–CNNN pipeline, an image is an input provided to the 
baseline convolutional neural network used as a feature extractor. The 
convolutional neural network produces feature maps. RPN is then 
trained on the feature maps to identify region proposals. Then the RoI 
pooling layer reshapes the predicted region proposals (ROI), and these 
region proposals or anchors are feed into the classification layer and the 
regression layer. The classification layer classifies if the anchor has an 
object or not, and the regression layer identifies the bounding box 
associated with the object. 

For a deep learning-based computer vision technique SSD and Faster 
R–CNN, we use mean Average Precision (mAP) to evaluate the models as 
we are performing crack-detection (single class classification). mAP is 
the popular metric in measuring object detectors’ accuracy, and it is 
illustrated in equation (2). Here, in our study, we used mAP@0.5 aka 
mAP with IoU = 0.5, which means that mAP is calculated at the 0.5 
single IoU value. Here, IoU is the abbreviation of intersection over the 
union. IoU is a ratio between the intersection and the union of the 
predicted boxes and the ground truth boxes. The detection accuracy for 
the deep-learning model is being used after testing the model on 300 test 
samples. 

mAP =

∑k
i=1APi

K
, (2)  

where, mAP is defined as the mean of average precision (AP) across all K 
classes. 

4. Results and discussions 

This section presents the results of our simulations. We discuss the 
feature selection process and the importance of considering other pa-
rameters, not just the accuracy, while comparing object detectors. A 
summary of all the different methods used and their accuracies are 
presented in Table 4. 

4.1. Viola-Jones object detector 

Viola-Jones object detector can be implemented using OpenCV’s 
Haar Cascade training. It uses Haar features and boosting to determine 
which of the input images are positive and quickly rejects all the sub- 

Fig. 5. (a), (b), (c) and (d) represent the predictions on the original crack images used in the study. The bounding boxes in the images are the predicted cracks.  

Table 1 
Contrasting values of Hu moment features between positive and negative images.   

Positive Negative  

Image 1  Image 2  Image 3  Image 4  

Hu (Agency, 2015) 0.00151 0.001346 0.003735 0.001491 
Hu (Maryan et al., 2019) 9.51E-08 9.17E-10 1.05E-06 1.11E-08 
Hu (NobregaJamesGokaraju et al., 2013) 4.55E-11 7.26E-14 4.45E-09 3.46E-11 
Hu (Stateler, 2016) 2.70E-11 5.28E-13 7.32E-10 2.87E-11 
Hu (Wang, 2014) 6.76E-22 9.44E-26 1.21E-18 ¡9.00E-22 
Hu (Viola and Jones, 2004) 1.05E-15 1.17E-17 5.60E-13 2.79E-15 
Hu (Wei Liu et al., 2015) 6.65E-22 4.24E-26 5.43E-19 7.05E-23  
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windows that appear not to have cracks in them. We train the cascade 
for 25 steps with the training data and use the generated XML files to test 
their object detection capabilities. Upon examining multiple XML files 
from each stage, this model’s accuracy turns up to be nearly 100%. The 
reason behind this phenomenon is the inherent characteristic of the haar 
feature itself. 

The Haar feature is a rectangular image consisting of rectangular 
black and white regions that are superimposed on each image to check 
for the presence of contrast regions. This can be seen in an example 
illustrated in Fig. 2. For example, in the case of a face recognition 
problem, a Haar cascade considers an object in the dataset a face if a 
particular set of Haar features determine that the image is that of a face. 
If three regions near the eyes, nose, and mouth are dark/light as per the 
model, then the object is a face. Otherwise, it is categorized as a non-face 
and eliminated in that stage. 

Similarly, in the case of cracks, every part of the image that contains 
any region of dark versus light areas is classified as cracks. In the later 
stages, these classifications become a lot more refined. But unless we 
introduce unnaturally occurring images such as that of cats or dogs out 
of context, the model will continue to predict most cracks successfully. 
The models were tested on two different test datasets. One with entirely 
positive images containing multiple cracks to see the actual detection of 
bounding boxes, and a second test set with a mix of both positive and 
negative images. The accuracy was calculated to be very close to 100% 
in both cases. 

The illustration in Fig. 3 below shows a detailed explanation of how 
the Viola-Jones classifier chooses haar features. The Haar features are 
scale-invariant. Therefore, they are capable of capturing both very small 
and very large area based features. Fig. 3 (a), (d) shows the synthetically 
created crack image. Fig. 3 (b), (e) show the Haar features that best 
select the areas with dark and light contrasts. Fig. 3 (c), (f) represent the 
Haar feature overlaid on top of the positive sample of a crack to illustrate 
the contrast regions that contribute to the classification of images. 
Combining 3(a) and 3(b) results in 3(c). Similarly, the combination of 
the 3(d) and 3(e) results in 3(f). 3(e) and 3(f) are representations of the 
Haar feature that check if the object (in this case, crack) is indeed pre-
sent. Based on a stagewise discrimination process, the Viola-Jones al-
gorithm rapidly removes negatives and keeps all the possible positives. 
The images shown below are examples of positive samples of cracks. 

In this research, the accuracy for the Viola-Jones object detection 
framework was performed by considering any detected crack, including 
the ones caused due to the high contrast border between the background 
image and the superimposed positive image true positives. This is the 
main reason for the high accuracy count. In our view, crack detection is 
successful. This is because the detector has developed the capability to 
distinguish harsh borders and cracks in images. This means that there 
will be more actual false positives. However, in high-risk cases such as 
cracks near levees, any and every detected crack – whether actually 
present or not, can be valuable information for the monitoring personnel 
to act upon. Keeping that in mind, we calculate the accuracy of the 
Viola-Jones classifier using our method of classifying these anomalous 
detections as true positives. 

4.2. Deep learning methods 

The SSD is a deep learning method that does not need any manual 
extraction of features. The MobileNetV2 acts as the feature extraction 
layer. We use a PyTorch implementation of the network to train and test 
on the dataset. Upon running it for 400 epochs, the accuracy was 
measured to be 90.90%. The inference time on the test dataset was 
0.147 s, making SSD feasible for real-time detection systems and edge 
devices like drones. On a small dataset with few variations, this was a 
high result. The only drawback in this method is manually annotating all 
the images in the dataset and having it ready in the VOC-format. This is 
the case with most deep learning methods. The most time-consuming 
part remains the manual annotation of a custom dataset, especially if 

it is very large (Fig. 4 and 5). 
Faster R–CNN also does not need any handcrafted feature set. We 

used pretrained Resnet-50 on the ImageNet dataset as the feature 
extractor. We use a Keras implementation of the framework to train and 
test on the dataset. We trained our model for 400 epochs, and the best 
performing model was recorded in the filesystem. The saved model was 
evaluated on a test dataset of 300 images, and the accuracy was 
measured to be 99.90%. Surprisingly, the trained model performed very 
well in the sample test images. The main reason for better accuracy 
might be because of “easier” examples in the test dataset than the 
training dataset. The inference time on a single image was, on average of 
1.34 s, which is longer than that of the SSD model. Since the main 
disadvantage of deep learning methods is that they need lots of images 
to be trained robustly; however, in our case, the small set of training 
images was not enough to generate a highly robust model. This may 
have caused the overfitting of the model. So, we discard this model in 
this stage of research as even though the performance is up to par, the 
model is still not trustworthy. Along with this, the inference time is also 
longer than SSD, which makes it not suitable to be used in real-time 
detection systems or edge devices such as drones. The next step for 
Faster R–CNN would be to generate more training samples, annotate 
them, and use them for the training purpose. 

4.3. Non-deep learning methods and stacking 

In Table 2, we present the results for the overall accuracy of the in-
dividual methods. 

Stacking based machine learning is an ensemble approach that ag-
gregates the information collected from different base models and 
combines them to make stronger predictions. We ensure that the 
methods that perform well but are least correlated to each other are 
selected. Table 3 shows a few results from stacking approaches. The code 
and data of our proposed model are freely available here http://cs.uno. 
edu/~tamjid/Software/crack/code_data.zip. 

5. Conclusions 

This paper assessed some of the most popular object detection al-
gorithms and proposed a new stacking method to detect cracks near 
levees. We developed a stacking-based machine learning method that is 
capable of detecting cracks by prediction. In comparison, the deep 
learning method performed best at 90.90%. The stacking method per-
formed comparably well at around 85%. 

The Viola-Jones detector resulted in a 100% accuracy. Despite hav-
ing a perfect accuracy, it might not be the best possible one to use for a 
real-world scenario since it categorizes most high contrast surfaces in 
the context of flood control structures as a crack. Using such a method 
would only be beneficial in especially high-risk cases to detect all and 
any possible cracks. In cases where these models must run in real-time 
on the small architecture of a drone, making sure that the computa-
tional overhead is as low as possible is very important. Deep learning 
processes take up a lot more computational power than the stacking 
method does. Therefore, without sacrificing too much accuracy, the 
stacking method would work better on smaller devices. Table 4 shows 

Table 2 
Results of overall accuracy for individual machine learning methods.  

Machine learning Method Overall Accuracy 

Random Decision Forest 70.022% 
Extra Tree Classifier 65.86% 
K-Nearest Neighbors 58.58% 
Logistic Regression 58.52% 
Xtreme Gradient Boosting 71.83% 
Gradient Boosting Classifier 76.12% 
Bagging 70.33% 
Support Vector Machine 73.52%  
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the comparison between all the methods. 
We also created a dataset that contributes to the research community 

and describes a new way to augment data when it is limited syntheti-
cally. Apart from this, we test different features used in the Stacking 
method and conclude that with careful feature selection and Stacking, 
the model’s performance improves significantly. We make some obser-
vations on the Viola-Jones algorithm, and those strengthen our under-
standing of the way Haar features work. We also make some arguments 
in favor of using the stacking approach instead of the deep learners when 
using it on drones. Using the Viola-Jones detector in the real world 
might result in a lot more false positives than necessary. 
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