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A B S T R A C T   

Identification of RNA-binding proteins (RBPs) that bind to ribonucleic acid molecules is an important problem in 
Computational Biology and Bioinformatics. It becomes indispensable to identify RBPs as they play crucial roles in 
post-transcriptional control of RNAs and RNA metabolism as well as have diverse roles in various biological 
processes such as splicing, mRNA stabilization, mRNA localization, and translation, RNA synthesis, folding- 
unfolding, modification, processing, and degradation. The existing experimental techniques for identifying 
RBPs are time-consuming and expensive. Therefore, identifying RBPs directly from the sequence using compu-
tational methods can be useful to annotate RBPs and assist the experimental design efficiently. In this work, we 
present a method called AIRBP, which is designed using an advanced machine learning technique, called 
stacking, to effectively predict RBPs by utilizing features extracted from evolutionary information, physi-
ochemical properties, and disordered properties. Moreover, our method, AIRBP, use the majority vote from 
RBPPred, DeepRBPPred, and the stacking model for the prediction for RBPs. 

The results show that AIRBP attains Accuracy (ACC), Balanced Accuracy (BACC), F1-score, and Mathews 
Correlation Coefficient (MCC) of 95.84 %, 94.71 %, 0.928, and 0.899, respectively, based on the training dataset, 
using 10-fold cross-validation (CV). Further evaluation of AIRBP on independent test set reveals that it achieves 
ACC, BACC, F1-score, and MCC of 94.36 %, 94.28 %, 0.897, and 0.860, for Human test set; 91.25 %, 93.00 %, 
0.896, and 0.835 for S. cerevisiae test set; and 90.60 %, 90.41 %, 0.934, and 0.775 for A. thaliana test set, 
respectively. These results indicate that the AIRBP outperforms the existing Deep- and TriPepSVM methods. 
Therefore, the proposed better-performing AIRBP can be useful for accurate identification and annotation of 
RBPs directly from the sequence and help gain valuable insight to treat critical diseases. 

Availability: Code-data is available here: http://cs.uno.edu/~tamjid/Software/AIRBP/code_data.zip   

1. Introduction 

RNA Binding Proteins (RBPs) are proteins that bind to ribonucleic 
acid (RNA) molecules and form dynamic units called ribonucleoprotein 
(RNP) complexes. These RBPs, along with the RNP complexes, play a 
crucial role starting from the biogenesis process of RNA to its degrada-
tion [1]. Additionally, they contribute to several essential biological 
functions that include cellular processes (cellular functions, transport, 
and localization), mRNA stability [2], stress response [3], identifying 
tumor metastasis signatures [4], tumor differentiation [5], apoptosis, 
and especially gene regulation at the transcriptional and 
post-transcriptional levels [6,7]. As an illustration, the newly formed 

messenger RNA, which carries necessary genetic information from DNA 
to ribosomes, associates with various RNA binding proteins (RBP) to 
form messenger ribonucleoprotein (mRNP) complexes [8]. These mRNP 
complexes govern major elements of the metabolism and functions of 
mRNA. Similarly, the microRNPs (miRNPs), formed through the asso-
ciation of the RBPs with microRNAs (miRNAs), controls the translation 
and stability of RNA itself [9]. Identifying RBPs and their mRNA targets 
are shown useful in cancer therapy [9,10]. Numerous other diseases 
have been linked to defective RBP expression and functions, such as 
neuropathies, muscular atrophies, human genetic disorders [11], and 
metabolic disorders [12]. All this information highlights the urgency of 
identifying the possible RBPs. 
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As of today, numerous studies have been performed, and various 
experimental and computational methods have been developed to 
identify and expand our knowledge of RBP. The initial steps towards 
identification and study of RBPs and RNP complexes date back to almost 
half a century ago, where experimental methods such as purification of 
mRNPs from in vitro UV-irradiated polysomal fractions [13], from 
UV-irradiated intact cells [14], and untreated cells [15] revealed the 
association of a specific set of proteins with mRNA [8]. Recently, 
cutting-edge experimental approaches are developed to recognize 
numerous RBPs, which include the identification of 860 RBPs in human 
HeLa cells [16] using UV cross-linking methods, 797 RBPs in human 
embryonic kidney cell line [8] using photoreactive nucleotide-enhanced 
UV cross-linking and oligo(dT) purification approach, 555 
mRNA-binding proteins from mouse embryonic stem cells [17] using UV 
cross-linking, oligo(dT) and Mass Spectrometry and 120 RBPs from S. 
cerevisiae cells [18] using UV cross-linking and purification methods. 
Likewise, several RBPs have also been identified from plant cells using 
the UV cross-linking approach [19–23]. These experiments for identi-
fying and analyzing RBPs, have broadened our understanding of RBPs to 
a certain extent. Despite the great efforts and achievements, these ex-
periments are expensive, time-consuming, and labor-intensive [24]. 
Moreover, the tremendous progress in genome sequencing has resulted 
in an unprecedented amount of genetic information and provided a 
plethora of protein sequences [25], which outpace the tasks of anno-
tating them and elucidating their functions. Thus, it becomes urgent to 
have faster and more accurate computational approaches to build an 
RBP repository and RNA-RBP interaction network maps. 

In the recent past, several attempts have been made in identifying 
RNA-binding proteins, and many effective computational prediction 
methods have been developed, which can be divided into two broad 
categories: i) templated based; and ii) machine learning-based. Tem-
plate-based methods extract significant structural or sequence similarity 
between the query and a template known to bind RNA to assess the 
target sequence’s RNA-binding preference [26–28]. Unlike 
template-based methods, in machine learning methods, the predictive 
model is created to predict by finding a pattern in the input feature space 
[29–31]. The machine learning approaches vary in the features 
employed and the classification algorithm used. 

Zhao et al. proposed two template-based approaches for predicting 
RBPs, of which SPOT-stru [27] is a structure-based approach, and 
SPOT-seq [26] is a sequence-based approach. In SPOT-stru, the relative 
structural similarity in the form of Z-score and a statistical energy 
function DFIRE is used to predict RBPs. The results indicate that 
SPOT-stru achieved the Mathews Correlation Coefficient (MCC) of 0.57 
on the training data of 212 RNA-binding domains and 6761 non-RNA 
binding domains. On the other hand, in SPOT-seq, the fold recognition 
between the target sequence and template structures using the defined 
sequence-structure matching score predicts RBPs. As shown, SPOT-seq 
achieved the MCC of 0.62 on the training data of 215 RBP chains and 
5765 non-binding protein chains. 

The machine learning-based approach for predicting RNA-binding 
proteins involves two crucial steps: i) extraction of relevant features 
and ii) selection of an appropriate classification algorithm. Furthermore, 
depending on the feature extraction mechanism, the existing predictive 
method can be segmented into two different categories: i) extraction of 
relevant features from the structure of a protein [29,31]; and ii) 
extraction of relevant features from protein sequence [30,32–34]. 
BindUp [31], available as a web server, is one of the recent 
structure-based methods that extract electrostatic features and other 
properties from the protein structure and uses an SVM classifier for RBPs 
prediction. As reported, BindUp attains sensitivity of 0.71 and specificity 
of 0.96 on an independent test set of 323 structures of RNA binding 
proteins and a control set of an equal number extracted from Protein 
Data Bank (PDB). Towards a sequence-based approach, Ma et al. [32,33] 
recently proposed two methods, which differ in the features used to train 
the random forest model for predicting. In [33], the authors 

incorporated features of evolutionary information combined with 
physicochemical features (EIPP) and amino acid composition feature to 
develop the random forest predictor. Besides, in [32], the authors’ 
employed features such as a conjoint triad, binding propensity, 
non-binding propensity, and EIPP to establish random forest-based 
predictors with the minimum redundancy maximum relevance 
(mRMR) method, followed by incremental feature selection (IFS). As 
reported, their method achieved an accuracy of 0.8662 and MCC of 
0.737. Zhang and Liu [34] proposed a new sequence-based approach, 
namely RBPPred which, integrates the physiochemical properties with 
the evolutionary information extracted from Position Specific Scoring 
Matrix (PSSM) profile and utilizes SVM to predict RBPs. As shown, 
RBPPred correctly predicted 83 % of 2780 RBPs and 96 % of 7093 
non-RBPs with MCC of 0.808 using the 10-fold cross-validation (CV) 
approach. The authors recently proposed an improved deep 
learning-based method, Deep-RBPPred [35], for predicting RBPs. 
Deep-RBPPred needs fewer physicochemical properties from the protein 
sequences and runs much faster compare to RBPPred. Deep-RBPPred is 
trained on balanced and imbalanced datasets and achieved the MCC of 
0.740 and 0.730 on the training data, respectively. Despite significant 
progress, most of the approaches for RBPs prediction developed in the 
past are limited in explaining how protein-RNA interactions occur. Thus, 
it is essential to identify new features, effective encoding technique and 
advanced machine learning techniques that can help further improve 
the accuracy of RBPs predictor and ultimately improve our under-
standing of RNA-protein interactions and their functions. 

In this work, we explore different sequence-based features, encoding 
techniques, and machine learning approaches to further improve RNA- 
binding proteins’ prediction accuracy and our understanding of RNA- 
protein interaction’s binding mechanism. We propose a method, 
AIRBP, which utilizes features: Evolutionary Information (EI), Physi-
ochemical Properties (PP), and Disordered Properties (DP). It uses four 
different types of feature encoding technique: Composition, Transition 
and Distribution (C-T-D) [34], Conjoint Triad (CT) [34,36], PSSM Dis-
tance Transformation (PSSM-DT) [37,38] and Residue-wise Contact 
Energy Matrix Transformation (RCEM-T) [37]. Furthermore, AIRBP 
utilizes an ensemble machine learning framework, known as stacking 
[39] and majority voting [40], to predict RBPs from protein sequence 
only. AIRBP offers a significant improvement in the prediction of RBPs 
based on the training and independent test datasets when compared to 
the existing start-of-the-art predictors. Therefore, our predictor can be 
trusted and used by the research community to guide further the ex-
periments related to RNA-protein interactions and their functions. We 
believe that the superior performance of AIRBP will motivate the re-
searchers to use it to identify RNA-binding proteins from sequence in-
formation. Moreover, the proposed ensemble-based machine learning 
technique, encoding techniques and features discussed in this work 
could be applied to tackle other relevant biological problems. 

2. Materials and methods 

This section describes the approach for training and independent test 
data preparation, feature extraction and encoding, performance evalu-
ation metrics, and finally, the path we took to establish the ensemble- 
based machine learning framework for RBPs prediction. 

3. Dataset 

For this work, we collected the updated version of the training 
dataset first proposed by [34] from the web link http://rnabinding. 
com/RBPPred.html. The authors created the updated training dataset 
[34] from the original training dataset by removing 16 proteins con-
taining RNAs in their crystal structure from the negative set. Therefore, 
the updated training dataset we collected consists of 7077 non-RBPs (16 
proteins removed from the original training dataset, which contained 
7093 non-RBPs) and 2780 RBPs (same as the original training dataset). 
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Next, we found that 13 out of 2780 and 90 out of 7077 protein sequences 
in RBPs and non-RBPs set, respectively, contained unknown amino acid 
(X). These sequences containing unknown amino acid (X) were removed 
from further consideration as the physiochemical properties of an un-
known amino acid (X) could not be obtained. After removing the se-
quences, the training dataset contains 2767 RBPs and 6987 non-RBPs. 

Similarly, we also collected the updated version of the test dataset 
first proposed by [34] from the web link http://rnabinding.com/RBPP 
red.html. This dataset consists of independent test sets for 3 species, 
human, Saccharomyces cerevisiae (S. cerevisiae or SC), and Arabidopsis 
thaliana (A. thaliana or ATH). The search for the RBP and non-RBPs was 
made from UniProt and PISCES databases, respectively. Initially, 1551 
RBPs and 1350 non-RBPs, 560 RBPs and 395 non-RBPs, and 603 RBPs 
and 102 non-RBPs were selected for human, S. cerevisiae, and A. thaliana, 
respectively. The authors created the test set [34] from the original in-
dependent test set by removing 9 proteins from the human set and 7 
proteins from S. cerevisiae set that had RNAs in their crystal structure 
from the negative set, respectively. We removed the protein sequences 
containing unknown amino acid (X) from each of these independent 
datasets and obtained 967 RBPs and 584 non-RBPs for human, 354 
RBPs, and 134 non-RBPs for S. cerevisiae and 456 RBPs and 36 non-RBPs 
for A. thaliana. 

However, only a few proteins were able to make it into the human, S. 
cerevisiae, and A. thaliana category because a significant number of 
proteins were filtered out either because the relevant features could not 
be extracted or because the testing and training set both contained 
identical sequences. Particularly, some proteins were removed as they 
contain unknown amino acid (X), and no secondary structure or 
evolutionary information results could be generated for these proteins. 
Furthermore, additional proteins were removed because these proteins 
had identical sequences between each of the three testing sets and 
training set. 

We created a new training set and three new independent test sets to 
evaluate our proposed method from the above train and test sets by 
removing identical sequences. Identical sequences in train and test sets 
may lead to bias results. We removed the identical sequence using the 
CD-HIT tool [41] to ensure that there is no overlap between the training 
and test set. We combined the training and test set and ran the CD-HIT 
tool with the sequence identity cutoff of 25 % and collected a training set 
that includes 2642 RBPs and 6884 non-RBPs and three independent test 
sets that contain a total of 51 RBPs and 144 non-RBPs for human, 30 
RBPs and 50 non-RBPs for S. cerevisiae, and 48 RBPs and 14 non-RBPs for 
A. thaliana. 

Moreover, to increase the number of proteins in A. thaliana test set, 
we further downloaded 836 A. thaliana RBPs recently published by 
Marondedze [42]. To balance the new data’s positive and negative 
samples, we downloaded an additional 1368 non-RBPs from Protein 
Data Bank (PDB). Further, we utilized the same techniques used to 
create the negative samples (non-RBPs) in the RBPpred [34] method, to 
obtain a non-redundant non-RBPs set. Subsequently, we combined the 
new data with the training and test set mentioned above and reran the 
CD-HIT tool with the sequence identity cutoff of 25 % to obtain 301 
RBPs and 128 non-RBPs for the new A. thaliana dataset. Then, we added 
80 % of the new A. thaliana data to the training set and the remaining 20 
% data to the test set. Finally, we obtained a training set that includes 
2882 RBPs and 6986 non-RBPs and A. thaliana test set that contains 109 
RBPs and 40 non-RBPs. The human and S. cerevisiae test dataset 
remained unchanged. 

3.1. Balanced training dataset 

The training dataset contains 2642 RBPs and 6884 non-RBPs, which 
is highly imbalanced. The imbalanced problem can be mitigated by 
undersampling or oversampling the dataset. Oversampling methods 
create new synthetic examples in the minority class, whereas under-
sampling methods delete or merge examples in the majority class. 

Undersampling can remove important data points. Therefore, we choose 
an oversampling method, Synthetic Minority Oversampling Technique 
(SMOTE), to make the dataset balanced. SMOTE is a widely used over-
sampling method [43]. Smote creates synthetic minority class samples 
by generating new samples on the lines connecting a point (sample) and 
one of its K-nearest neighbors. We extracted the probabilities from the 
base classifiers with the balanced dataset using SMOTE. The meta 
classifier is trained with the imbalanced dataset. 

3.2. Feature extraction 

To create an effective RBPs predictor from sequence alone, the 
feature vector for each protein sequence was derived from the PSSM 
profile, Physiochemical Properties (PP), Residue-wise Contact Energy 
Matrix (RCEM), and Molecular Recognition Features (MoRFs). A total of 
10 different properties was encoded with a vector of 2603 dimensions to 
represent a protein sequence, as shown in Fig. 1. Out of 10, five distinct 
properties: hydrophobicity, polarity, normalized van der Waals volume, 
polarizability, and predicted secondary structure that belongs to the PP 
group were each encoded via 21 dimension vector utilizing the C–T–D 
encoding technique [44,45]. Moreover, the remaining five properties, 
solvent accessibility, charge, and polarity of the side chain, MoRFs, 
RCEM, and PSSM profile, were encoded via 13, 64, 1, 20, and 2400 
dimensional vectors, respectively. Here, PSSM belongs to the EI group, 
and MoRFs and RCEM belong to the DP group. The properties, solvent 
accessibility, charge, and polarity of the side chain, RCEM, and PSSM 
profile were encoded utilizing C–T–D, CT [34,36], RCEM trans-
formation [37], and PSSM-DT transformation techniques [37,38], 
respectively. Each of the 10 properties, along with their encoding 
mechanism, is described next in detail. 

3.3. Features extracted from physicochemical properties 

In this section, we describe various feature extraction techniques we 
utilized to obtain a fixed dimensional feature vector from the physico-
chemical properties, which include hydrophobicity, polarity, normal-
ized van der Waals volume, polarizability, predicted secondary 
structure, solvent accessibility, and charge and polarity of the side chain 
to encode protein sequence. 

3.4. Composition, transition and distribution (C–T–D) transformation 
features 

In this section, the C–T–D transformation method aims to describe 
the distribution patterns of amino acid properties. This method to 
compute distribution patterns of amino acid properties was first sug-
gested by [49] for protein fold class prediction. In our implementation, 
we used C–T–D transformation to encode the properties, including 
hydrophobicity, polarity, normalized van der Waals volume, polariz-
ability, predicted the secondary structure, and solvent accessibility. As 
the name suggests, this transformation technique focuses on three 
different components: composition of a particular amino acid in the 
sequence, a transition of one amino acid to another as we go linearly 
through the sequence, and distribution referring to how one amino acid 
group is distributed throughout the protein sequence [50,51]. To create 
a consistent number of features for proteins with different sequence 
lengths, 20 standard amino acids are divided into 3 groups [52] based on 
their hydrophobicity, normalized van der Waals volume, polarity, and 
polarizability. Fig. 2 illustrates the C–T–D transformation technique 
while the 20 standard amino acids are divided into 2 groups which, 
generates a feature vector of 13 dimensions. Following the trans-
formation similar to Fig. 2 but with amino acids classified into 3 groups 
rather than 2, we obtain a feature vector of 21 dimensions for the 
physiochemical properties such as hydrophobicity, normalized van der 
Waals volume, polarity, and polarizability. 

Furthermore, to encode the predicted secondary structure and 
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solvent accessibility as features, we first used the SSpro and ACCpro 
program [46] to predict secondary structure in the form of ‘H’ (helix), ‘E’ 
(strand), and ‘C’ (other than helix and strand) and solvent accessibility 
in the form of ‘e’ (exposed residues) and ‘-’ (buried residues), respec-
tively. The choice of SSpro and ACCpro was made to extract predicted 
secondary structure and solvent accessibility because of its superior 
performance and remarkable speed. As reported, SSpro and ACCpro 
[46] achieved an accuracy of 92.9 % and 90 % for secondary structure 
prediction and relative solvent accessibility prediction, respectively. 

Using the transformation technique described above, we obtained a 
feature vector of 21 dimensional and 13 dimensions for predicted sec-
ondary structure and solvent accessibility, respectively. 

3.5. Conjoint triad (CT) transformation features 

While the 20 standard amino acids are divided into 4 groups (Group 
A, B, C, and D representing acidic, basic, polar, and non-polar, respec-
tively), Shen et al. first proposed the CT transformation technique for 

Fig. 1. Illustration of encoding the protein sequence into a feature vector of 2603 features utilizing various feature encoding technique. Here, the predicted SS and 
surface accessibility were obtained from SSpro and ACCpro program [46]. Likewise, the MoRFs scores were predicted using the OPAL program [47], and the PSSM 
scores were obtained using the PSI-BLAST program [48]. 

Fig. 2. Illustration of the C–T–D transformation technique. The 20 standard amino acids are divided into 2 groups (e.g., X and Z). First, the group index (X or Z) of 
every amino acid in the protein sequence is extracted, and consequently, a vector of 13 dimensions is obtained through composition, transition, and distribution. 
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protein-protein interaction prediction [53], which was successfully 
applied for protein-RNA interaction prediction in the past [34,36]. In 
our implementation, we adopted the CT transformation technique to 
encode the protein sequence based on the side chain’s charge and po-
larity of the amino acids in a protein. First, the 20 standard amino acids 
are divided into 4 groups: i) acidic (contain residues D and E); ii) basic 
(contain residues H, R and K); iii) polar (contain residues C, G, N, Q, S, T, 
and Y); and iv) non-polar (contain residues A, F, I, L, M, P, V, and W) 
according to their charge and polarity of the side chain. Then, the pro-
tein sequence is converted into a sequence of group types where each 
element in the sequence represents a group type of the corresponding 
amino acid in the protein sequence. Next, a triad of three contiguous 
amino acids is considered as a single unit. Accordingly, all the triads can 
be classified into 4 × 4 × 4 = 64 classes. Finally, a sliding window of a 
triad is passed through a sequence of group types, and the frequency of 
occurrences of each type of triad is counted. We obtain a feature vector 
of 64 dimensions for charge and polarity of side chains of amino acids in 
a protein through this process. Fig. 3 illustrates the CT transformation 
technique we used to extract features from protein sequences based on 
side chains’ charge and polarity. 

3.6. Features extracted from evolutionary information 

This section describes various feature extraction techniques utilized 
to obtain a fixed dimensional feature vector from the evolutionary in-
formation, called PSSM profile to encode protein sequence. 

Evolutionary information is one of the most critical information 
useful for solving various biological problems and has been widely used 
in many research work [34,54–58]. In this work, the evolutionary in-
formation in the form of the PSSM profile is directly obtained from the 
protein sequence and later transformed into a fixed dimensional vector. 

PSSM captures the conservation pattern in multiple alignments and 
preserves it as a matrix for each position in the alignment. The high score 
in the PSSM matrix indicates more conserved positions, and the lower 
score indicates less conserved positions [57]. For this study, we gener-
ated the PSSM profile for every protein sequence by executing three 
iterations of PSI-BLAST against NCBI’s non-redundant database [48]. 
The evolutionary information in the PSSM profile is represented as a 
matrix of L × 20 dimensions, where L is the length of the protein 
sequence. A particular element Mi,j of the PSSM matrix, represents the 
occurrence probability of the amino acid i at position j of a protein 
sequence. 

Particularly, we apply Position Specific Scoring Matrix Distance 
Transform (PSSM-DT) that includes PSSM-Similar Distance Transform 
(PSSM-SDT) and PSSM-Different Distance Transform (PSSM-DDT) to 
extract occurrence probabilities for the pairs of same amino acids and 
different amino acids, respectively as features. Moreover, we apply 
Evolutionary Distance Transform (EDT) to extract the non-co- 
occurrence probability of two amino acids as features. Here, the 
evolutionary information is inherently captured in the form of a PSSM 
profile as PSI-BLAST generates PSSM profile for target protein sequence 
by performing multi-sequence alignment with the NCBI’s non- 
redundant database. In general, multi-sequence alignment provides in-
formation about how close or distinct the target protein is with the 
proteins in the large NCBI database, which contains protein sequences of 
species that have evolved with time. Moreover, it provides information 
regarding the conserved region of a target protein sequence. 

3.7. PSSM-Distance transformation (PSSM-DT) features 

We use two types of distance transformation techniques [37,38]: i) 
the PSSM distance transformation for the same pairs of amino acids 

Fig. 3. Illustration of Conjoint Triad transformation technique.  
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(PSSM-SDT); and ii) the PSSM distance transformation for different pairs 
of amino acids (PSSM-DDT), together known as PSSM-DT to extract 
fixed dimensional feature vectors of size 100 and 1900, respectively. 

Utilizing PSSM-SDT, we compute the occurrence probabilities for the 
pairs of the same amino acids separated by a distance D along the 
sequence, which can be represented as: 

PSSM − SDT(j, D) =
∑L− D

i=1
Mi,j ∗ Mi+D, j

/

(L − D) (1)  

where j represents one type of the amino acid, L represents the length of 
the sequence, Mi,j represents the PSSM score of amino acid j at position i, 
and Mi+D,j represents the PSSM score of amino acid j at position i + D. 
Through this approach, 20 × K number of features were generated 
where K is the maximum range of D (D = 1,2, …, K). 

Likewise, utilizing PSSM-DDT, we compute the occurrence proba-
bilities for pairs of different amino acids separated by a distance D along 
the sequence, which can be represented as: 

PSSM − DDT(i1, i2, D) =
∑L− D

j=1
Mj,i1 ∗ Mj+D,i2

/

(L − D) (2)  

where, i1 and i2 represent two different types of amino acids. The total 
number of features obtained by PSSM-DDT is 380 × K. Here, we consider 
K = 5. Therefore, 100 features were obtained by PSSM-SDT, and PSSM- 
DDT transformation techniques obtained a total of 1900 features. 

3.8. Evolutionary distance transformation (EDT) features 

Unlike PSSM-DT, the EDT approximately measures the non-co- 
occurrence probability of two amino acids separated by a specific dis-
tance d in a protein sequence from the PSSM profile [57,59]. The EDT is 
calculated from the PSSM profile as: 

f
(
Rx,Ry

)
=

∑D

d=1

1
L − d

∑L− d

i=1

(
Mi,x − Mi+d,y

)2 (3)  

where d is the distance separating two amino acids, D is the maximum 
value of d, Mi,x and Mi+d,y are the elements in the PSSM profile, and Rx 
and Ry represent any of the 20 standard amino acids in the protein 
sequence. Here, the value of D = Lmin-1 where Lmin is the length of the 
shortest protein sequence in the training dataset. Using EDT, we obtain a 
feature vector of dimension 400. 

3.9. Features extracted from disordered properties 

This section describes a feature extraction technique utilized to 
obtain a fixed dimensional feature vector from the residue-wise contact 
energy matrix to encode protein sequence. 

RBPs are found to bind with RNA through classically structured RNA- 
binding domains and intrinsically disordered regions (IDRs) [60]. For 
example, approximately 20 % of the identified mammalian RBPs (~170 
proteins) were found to be disordered by over 80 % [61]. The energy 
contribution of a large number of inter and intra-residual interactions in 
intrinsically disordered proteins (IDPs) cannot be approximated by the 
energy functions extracted from known structures [58,62–65] as IDPs 
lack a defined and ordered 3D structure [66]. Therefore, to inherently 
incorporate important information regarding the IDRs and amino acid 
interactions, we employed the predicted residue-wise contact energies 
[67] and molecular recognition features (MoRFs) [47] to encode the 
protein sequence. 

3.10. Residue-wise contact energy matrix transformation (RCEM-T) 
features 

We adopted the predicted residue-wise contact energy matrix 

(RCEM) derived in [67], by the least square fitting of 674 proteins pri-
mary sequence with the contact energies derived from the tertiary 
structure of 785 proteins. As shown in Table 1, the RCEM is a 20 × 20 
dimensional matrix that contains residue-wise contact energy for 20 
standard amino acids. For a protein sequence of length L, an L × 20 
dimensional matrix M is obtained, which holds a 20-dimensional vector 
for each amino acid in a protein sequence. The resulting matrix M is then 
encoded into a feature vector of 20 dimensional by computing the 
column-wise sum as: 

f
(
Aj
)
=

∑L

i=1
mi,j (j = 1, 2,⋯, 20) (4)  

where mi,j is the element of matrix M, i is the amino acid index in a 
sequence, and j represents 20 standard amino acid types. The final 
feature vector, RCEM − T = [v1, v2, ⋯, v20] is obtained by dividing 
each element in RCEM-T by the sum of all the elements in the same 
vector. Considering Vs as the sum of all the elements in the RCEM-T 
vector, each component of the final RCEM-T vector can be represented 
as: 

RCEMT(vi) =
vi

Vs
(5)  

3.11. Molecular recognition features (MoRFs) 

MoRFs, also known as molecular recognition elements (MoREs), are 
disordered regions in a protein that exhibit various molecular recogni-
tion and binding functions [68]. Post-translational modifications (PTMs) 
can induce disorder to order transitions of IDPs upon binding with their 
binding partners, which could be either RNA, DNA, proteins, lipids, 
carbohydrates, or other small molecules [69,70]. MoRFs play a vital role 
in IDPs’ various biological functions located within long disordered 
protein sequences [47,71–73]. Additionally, Mohan et al. suggest that 
functionally significant residual structures exist in MoRF regions before 
the actual binding [74]. These residual structures could, therefore, be 
useful in the prediction of binding between proteins and RNA. Here, to 
capture the functional properties of IDRs that may bind to RNAs, we 
employ a single predicted MoRFs score as a feature. To obtain a single 
predicted MoRFs score, first, the residue-wise predicted MoRFs scores 
are obtained from the OPAL program [47]. A single predicted MoRFs 
score is computed by taking a ratio of the sum of the residue-wise MoRFs 
score and the length of the protein sequence. 

3.12. Performance evaluation 

To evaluate the performance of AIRBP, we adopted a widely used 10- 
fold CV and the independent testing approach. In the process of 10-fold 
CV, the dataset is segmented into 10 parts, which are each of about the 
same size. When one fold is kept aside for testing, the remaining 9 folds 
are used to train the classifier. This training and test process is repeated 
until each fold has been kept aside once for testing, and consequently, 
the test accuracy of each fold is combined to compute the average [75]. 
Unlike a 10-fold CV, in independent testing, the classifier is trained with 
the training dataset and consequently tested using the independent test 
dataset. Independent testing ensures that none of the samples in the 
independent test set are present in the training dataset. We used several 
performance evaluation metrics listed in Table 2 and ROC and AUC to 
test the performance of the proposed method and compare it with the 
existing approaches. AUC is the area under the receiver operating 
characteristics (ROC) curve, which is used to evaluate how well a pre-
dictor separates two classes of information (RNA-binding and 
non-binding protein). 
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3.13. Framework of AIRBP 

To develop the AIRBP predictor for RBPs prediction, we adopted an 
idea of a stacking [39] and majority voting [40] based machine learning 
approach, which has recently been successfully applied to solve various 
bioinformatics problems [37,76–78]. Stacking is an ensemble-based 
machine learning approach, which collects information from multiple 
models in different phases and combines them to form a new model. 
Stacking is considered to yield more accurate results than the individual 
machine learning methods as the information gained from more than 
one predictive model minimizes the generalization error. The stacking 
method includes two-levels of classifiers, where the classifiers of the 
first-level are called base-classifiers, and the classifiers of the 
second-level are called meta-classifiers. In the first level, a set of 
base-classifiers C1, C2, …, CN is employed [79]. The prediction proba-
bilities from the base-classifiers are combined using a meta-classifier to 
reduce the generalization error and improve the accuracy of the pre-
dictor. To enrich the meta-classifier, with necessary information on the 
problem space, the classifiers at the base-level are selected, such that 
their underlying operating principle is different from one another [37, 
78]. Majority Voting is also an ensemble machine learning algorithm 
[40] that involves summing the class labels’ votes from different models 
and predicting the class based on the majority votes. 

To select the classifiers to use in the first and second level of the 
AIRBP stacking method, we analyzed the performance of seven indi-
vidual classification methods: i) Random Decision Forest (RDF) [80]; ii) 
Bagging (Bag) [81]; iii) Extra Tree (ET) [82]; iv) Extreme Gradient 
Boosting (XGBoost or XGB) [83]; v) Logistic Regression (LogReg) [75, 
84]; vi) K-Nearest Neighbor (KNN) [85]; and LightGBM [86]. The al-
gorithms and their configuration details are briefly discussed below. 

i) RDF: RDF [80] constructs many decision trees, each of which is 
trained on a random subset of the training data. The sub-set used to 
create a decision tree is constructed from a given set of observations of 
training data by taking ‘m’ observations at random and with replace-
ment (a.k.a. Bootstrap Sampling). Next, the final predictions are ach-
ieved by aggregating the prediction from the individual decision trees. 
For classification, the final prediction is made by computing the mode 
(the value that appears most often) of the classes (in our case: whether a 
protein is RNA-binding or non-binding). In our implementation of the 
RDF, we used bootstrap samples to construct 1000 trees (n_estimators =
1000) in the forest, and the rest of the parameters were set to their 
default value. Ta
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 Table 2 
Name and definition of the evaluation metric.  

Name of Metric Definition 

True Positive (TP) Correctly predicted RNA-binding proteins 
True Negative (TN) Correctly predicted non-RNA-binding 

proteins 
False Positive (FP) Incorrectly predicted RNA-binding proteins 
False Negative (FN) Incorrectly predicted non-RNA-binding 

proteins 
Recall/Sensitivity/True Positive 

Rate (SN) 
TP

TP + FN  
Specificity/True Negative Rate (SP) TN

TN + FP  
Fall Out Rate /False Positive Rate 

(FPR) 
FP

FP + TN  
Miss Rate/False Negative Rate 

(FNR) 
FN

FN + TP  
Accuracy (ACC) TP + TN

FP + TP + TN + FN  
Balanced Accuracy (BACC) 1

2

(
TP

TP + FN
+

TN
TN + FP

)

Precision (PR) TP
TP + FP  

F1-score (Harmonic mean of 
precision and recall) 

2TP
2TP + FP + FN  

Mathews Correlation Coefficient 
(MCC) 

(TPTN) − (FPFN)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

√
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ii) Bag: Bag [81] machine learning algorithm operates by forming a 
class of algorithms that creates several instances of a base classifier/-
estimator on random subsets of the training samples and consequently 
combines individual predictions to yield a final prediction. It reduces the 
variance in the prediction. In our study, the BAG classifier was fit on 
multiple subsets of data using Bootstrap Sampling using 1000 decision 
trees (n_estimators = 1000), and the rest of the parameters were set to 
their default value. 

iii) ET: Extremely randomized tree (ET) classifier [82] operates by 
fitting several randomized decision trees (a.k.a. extra-trees) on various 
sub-sets and uses averaging to improve the prediction accuracy and 
control over-fitting. In our implementation, the ETC model was con-
structed using 1000 trees (n_estimators = 1000), and the Gini impurity 
index assessed the quality of a split. The rest of the parameters were set 
to their default value. 

iv) XGBoost: XGBoost [83] follows the same principle of gradient 
boosting as the Gradient Boosting Classifier (GBC). GBC (Friedman, 
2001) involves three elements: (a) a loss function to be optimized, (b) a 
weak learner to make predictions, and (c) an additive model to add weak 
learners to minimize the loss function. GBC’s objective is to minimize 
the loss of the model by adding weak learners in a stage-wise fashion 
using a procedure similar to gradient descent. The existing weak 
learners in the model remain unchanged while adding new weak 
learners. The new learner’s output is added to the output of the existing 
sequence of learners to correct or improve the model’s final output. 
Unlike GBC, XGBoost performs more regularized model formalization to 
control over-fitting, which results in better performance. In addition to 
increased performance, XGBoost provides higher computational speed. 
In our configuration of XGBoost, the values of parameters: colsample_-
bytree, gamma, min_child_weight, learning_rate, max_depth, n_estima-
tors, and subsample ratio were optimized to achieve the best 10-fold 
cross-validation accuracy using a grid search [87] technique. The best 
values of the parameters: colsample_bytree, gamma, min_child_weight, 
learning_rate, max_depth, n_estimators, and subsample ratio were found 
to be 0.6, 0.3, 1.5, 0.07, 5, 10,000 and 0.95, respectively. And the rest of 
the parameters were set to their default value. 

v) LogReg: LogReg (a.k.a. logit or MaxEnt) [75,84] is a machine 
learning classifier that measures the relationship between the categori-
cal dependent variable (in our case: an RNA-binding or non-binding 
proteins) and one or more independent variables by generating an 
estimation probability using logistic regression. In our implementation, 
we set all the parameters of LogReg to their default values. 

vi) KNN: KNN [85] is a non-parametric and lazy learning algorithm. 
Non-parametric means it does not make any assumption for underlying 
data distribution, instead, it creates models directly from the dataset. 
Furthermore, lazy learning means it does not need any training data 
points for a model generation rather uses the training data while testing. 
It works by learning from the K number of training samples closest in the 
distance to the target point in the feature space. The classification de-
cision is made based on the majority-votes obtained from the K nearest 
neighbors. Here, we set the value of K to 9 and the rest of the parameters 
to their default value. 

vi) LightGBM: LightGBM [86] also follows the gradient boosting 
framework that uses tree-based learning algorithms. The algorithm has a 
faster training speed, higher efficiency, and lower memory usage 
compared to XGBoost. It also supports parallel and GPU learning and 
capable of handling large-scale data. In our implementation, the 
LightGBM model was constructed using 1000 trees (n_estimators =
1000), and the rest of the parameters were set to their default value. 

All the classification methods mentioned above are built and opti-
mized using python’s Scikit-learn library [88]. To design a stacking 
method for AIRBP, we evaluated the different combinations of 
base-classifiers and finally selected the one that provided the highest 
performance. 

The set of stacking method tested are:  

i) SF1: RDF, LightGBM, LogReg, KNN in base-level and XGBoost in 
meta-level,  

ii) SF2: ETC, LightGBM, LogReg, KNN in base-level, and XGBoost in 
meta-level.  

iii) SF3: Bag, LightGBM, LogReg, KNN in base-level, and XGBoost in 
meta-level. 

Here, the choice of base-level classifiers is made such that the un-
derlying principle of learning of each of the classifiers is different from 
each other [37]. For example, in SF1, SF2, and SF3, the tree-based 
classifiers RDF, Bag, and ET are individually combined with the other 
two methods LogReg and KNN, to learn different information from the 
problem-space. Additionally, for each of the combinations SF1, SF2, and 
SF3, the XGBoost classifier is used in the meta-level, and LightGBM is 
used in the base-level because they performed well among all the other 
individual methods applied in this work. Moreover, the use of the 
combination of XGBoost and LightGBM provides us more information 
about the problem-space. It also improves time efficiency because 
LightGBM is faster than XGBoost. While examining the 10-fold CVs 
performance of the above three combinations, we found that the second 
stacking method, SF2 attains the highest performance. Therefore, we 
employ four classifiers ETC, LightGBM, LogReg, and KNN, as the base 
classifiers and XGBoost as the AIRBP stacking method’s meta-classifier. 
In AIRBP, the probabilities of both the classes (RBP and non-RBP) 
generated by the four base-classifiers are combined with the features 
and provided as input features to the meta-classifier. Moreover, to 
achieve better performance, the probabilities are extracted from the 
base classifiers with a balanced dataset, which is created using SMOTE, 
and the meta classifier is trained with the imbalanced dataset. Finally, 
we take the majority vote from RBPPred [34], the imbalance 
Deep-RBPPred model [35], and the stacking model for the prediction for 
RBPs. We chose the imbalance Deep-RBPPred model in majority voting 
as our final model is trained with the imbalance dataset. Fig. 4 shows the 
prediction framework of the AIRBP. 

4. Results 

In this section, we first demonstrate the performance comparison of 
potential base-classifiers and the stacking method. Finally, we report the 
performance of AIRBP on the training dataset and three independent test 
datasets and, consequently, compare it with the existing methods. 

4.1. Selection of classifiers for stacking 

To select the methods to use as the base and the meta-classifiers, we 
analyzed the performance of seven different machine learning algo-
rithms: LightGBM, RDF, Bag, ET, XGBoost, LogReg, and KNN on the 
training dataset through a 10-fold CV approach. The performance 
comparison of the individual classifiers on the training dataset is shown 
in Table 3. 

Table 3 further shows that the XGBoost and LightGBM are the best 
performing classifier among seven different classifiers implemented in 
our study in terms of balanced accuracy, accuracy, F1-score, and MCC. 
Moreover, the LightGBM attains balanced accuracy, accuracy, F1-score, 
and MCC of 93.65 %, 95.01 %, 0.914, and 0.879, respectively, whereas 
XGBoost attains balanced accuracy, accuracy, F1-score, and MCC of 
93.21 %, 94.61 %, 0.907, and 0.869, respectively. Furthermore, it is 
evident from Table 3 that the balanced accuracy, accuracy, F1-score, 
and MCC of the XGBoost and LightGBM are higher than ET, RDF, Log-
Reg, KNN, and Bag, respectively. The XGBoost and LightGBM algo-
rithms’ greater performance motivated us to use them both in base and 
meta-classier in the AIRBP prediction framework. 

To further select the classifiers to be used at the base-level, we 
adopted base-classifier selection guidelines based on different underly-
ing principles. Therefore, we used KNN and LogReg as two additional 
classifiers at the base-level. Then, we added a single tree-based ensemble 
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method out of three methods, RDF, Bag, and ET, at a time as the fourth 
base-classifier and designed three different combinations of stacking 
method, namely SF1, SF2, and SF3. We added LightGBM as a base 
classifier and XGBoost as the meta classifier as they are the better per-
forming among the other classifiers. The performance comparison of 
SF1, SF2, and SF3 stacking method on the training dataset using 10-fold 
CV are presented in Table 4. Table 4 demonstrates that SF2 outperforms 
both SF1 and SF3. Table 4 shows that SF2 has higher balanced accuracy, 
accuracy, F1-score, and MCC compared to SF1 and SF3. Hence, we select 

SF2, including ETC, LightGBM, LogReg, and KNN as base-classifiers and 
another XGBoost as a meta-classifier, as our final predictor. 

4.2. Performance comparison with existing approaches on the training 
dataset 

Here, we compare the performance of AIRBP with Deep-RBPPred 
[35] on the training dataset using the 10-fold CV approach. 
Deep-RBPPred and TriPepSVM [89] were recently proposed to predict 

Fig. 4. Prediction framework of the AIRBP.  
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RBPs directly from the sequence and have been shown to yield better 
predictions than other existing approaches. We did not compare AIRBP 
with the TriPepSVM method as TriPepSVM is not a generic method that 
can be applied to any species. Furthermore, it is to be noted that AIRBP 
uses the subset of the training dataset used in Deep-RBPPred as we have 
removed the identical sequences from the training and test dataset given 
by Zhang et al. [34]. For the comparison, the quantities for all the 
evaluation metrics for Deep-RBPPred are obtained from Zheng et al. 
[35]. The prediction results of AIRBP and Deep-RBPPred on the training 
dataset computed using 10-fold CV are listed in Table 5. 

From Table 5, we observed that AIRBP outperforms the Deep- 
RBPPred imbalance and balance model based on the MCC metric. We 
report MCC’s value only for the Deep-RBPPred predictor as Deep- 
RBPPred did not report the other metric values for the training data-
set. AIRBP provides a 23.15 % and 21.49 % improvement over the 
imbalance Deep-RBPPred and balanced Deep-RBPPred model, respec-
tively, based on the MCC metric. 

MCC considers true and false positives and negatives and is generally 
considered a balanced measure that can be used even though the classes 
are of very different sizes. From Table 5, it is clear that based on MCC, 
AIRBP outperforms both balance and imbalance Deep-RBPPred 
methods. 

4.3. Performance comparison with existing approaches on the 
independent test set 

In this section, we compare the performance of AIRBP with two 
recent predictors, Deep-RBPPred [35] and TriPepSVM [89], on three 
different independent test sets, Human, S. cerevisiae, and A. thaliana. To 
compare, we ran both Deep-RBPPred and TriPepSVM on the three in-
dependent test datasets, ATH, SC, and Human, respectively. The details 
of the process adopted for the comparison and the results obtained are 
provided below: 

4.4. Performance comparison with deep-RBPPred 

In Deep-RBPPred software, to make predictions, users can either 
choose a model trained with the balanced dataset (balance model) or a 
model trained with the imbalanced dataset (imbalance model). In our 
implementation, we extract cross-validation probabilities from the base 
classifiers with a balanced dataset (using SMOTE), and the meta clas-
sifier is trained with the imbalanced training dataset. Table 6 shows the 
comparison between the proposed method, AIRBP, and an existing 
imbalance Deep-RBPPRed model on three independent test datasets. 
Table 6 shows that AIRBP achieves an improvement of 3.96 % in ACC, 
4.08 % in BACC, 7.30 % in F1-score, and 10.68 % in MCC over imbal-
ance Deep-RBPPRed on Human test set. Likewise, AIRBP achieves an 
improvement of 1.39 % in ACC, 1.09 % in BACC, 1.59 % in F1-score, and 
2.58 % in MCC over imbalance Deep-RBPPRed on S. cerevisiae test set. 
Similarly, AIRBP achieves an improvement of 3.05 % in ACC, 2.07 % in 
BACC, 2.30 % in F1-score, and 7.04 % in MCC on A. thaliana dataset. On 
the average percentage improvement over all the independent test sets, 
AIRBP attains an improvement of 2.80 % in ACC, 2.41 % in BACC, 3.73 
% in F1-score, and 6.77 % in MCC over imbalance Deep-RBPPRed. 

Table 7 shows the comparison between the proposed method and the 
balance Deep-RBPPRed model on three independent test datasets. 
Table 7 shows that AIRBP achieves an improvement of 5.15 % in ACC, 
2.01 % in BACC, 7.68 % in F1-score, and 10.26 % in MCC over balance 
Deep-RBPPRed on Human test set. Likewise, AIRBP achieves an 
improvement of 14.06 % in ACC, 11.60 % in BACC, 14.29 % in F1-score, 
and 28.66 % in MCC over balance Deep-RBPPRed on S. cerevisiae test set. 
Moreover, on A. thaliana dataset, AIRBP achieves an improvement of 
1.50 % in ACC, 4.73 % in BACC, 0.76 % in F1-score, and 6.60 % in MCC 
over balance Deep-RBPPRed. On the average percentage improvement 

Table 3 
Comparison of various machine learning algorithms on the training dataset through a 10-fold CV.  

Metric/Methods LightGBM KNN LogReg Bag RDF XGB ETC 

SN (%) 90.35 92.26 91.85 88.45 81.37 89.83 76.79 
SP (%) 96.94 69.78 93.34 95.32 96.99 96.58 97.42 
BACC (%) 93.65 81.02 92.59 91.88 89.18 93.21 87.11 
ACC (%) 95.01 76.35 92.91 93.31 92.43 94.61 91.40 
FPR 0.031 0.302 0.067 0.047 0.030 0.034 0.026 
FNR 0.096 0.077 0.082 0.116 0.186 0.102 0.232 
PR (%) 92.41 55.74 85.06 88.63 91.78 91.55 92.48 
F1-score 0.914 0.695 0.883 0.885 0.863 0.907 0.839 
MCC 0.879 0.565 0.834 0.838 0.813 0.869 0.787 

The best score values are boldfaced. 

Table 4 
Comparison of different stacking method with a different set of base-classifiers 
on the training dataset through a 10-fold CV.  

Metrics / Stacking Model SF1 SF2 SF3 

SN (%) 91.57 92.02 91.53 
SP (%) 97.19 97.41 97.18 
BACC (%) 94.38 94.71 94.36 
ACC (%) 95.55 95.84 95.53 
FPR 0.028 0.026 0.028 
FNR 0.084 0.080 0.085 
PR (%) 93.09 93.61 93.05 
F1-score 0.923 0.928 0.923 
MCC 0.892 0.899 0.891 

The best score values are boldfaced. 

Table 5 
Comparison of AIRBP with the existing method on training dataset through 10-fold CV.  

Methods 
Evaluation Metrics 

SN (%) SP (%) BACC (%) ACC (%) FPR FNR PR (%) F1-score MCC 

Deep-RBPPred Imbalance – – – – – – – – 0.730 
Deep-RBPPred Balance – – – – – – – – 0.740 
AIRBP 92.02 97.41 94.71 95.84 0.026 0.080 93.61 0.928 0.899 
(% imp. over Deep-RBPPred Imbalance) (-) (-) (-) (-) (-) (-) (-) (-) (23.15 %) 
(% imp. over Deep-RBPPred Balance) (-) (-) (-) (-) (-) (-) (-) (-) (21.49 %) 

The best score values are boldfaced. ‘-’ represents missing value, or the value not reported by Deep-RBPPred, and ‘(-)’ denotes that the % imp. cannot be calculated. 
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over all the independent test sets, AIRBP attains a gain of 6.90 % in ACC, 
6.11 % in BACC, 7.57 % in F1-score, and 15.17 % in MCC over balance 
Deep-RBPPRed. Tables 6 and 7 show that the AIRBP outperforms the 
state-of-the-art Deep-RBPPRed method in both balance and imbalance 
models. 

The best score values are boldfaced. Here, ‘imp.’ stands for 
improvement. The ‘% imp.’ represents the improvement in percentage 
achieved by AIRBP for corresponding independent test set for corre-
sponding evaluation metric over the balance Deep-RBPPRed method. 
Likewise, the ‘avg. % imp.’ represents the average percentage 
improvement achieved by AIRBP for all independent test set for corre-
sponding evaluation metrics over the balance Deep-RBPPRed method. 
Additionally, ‘(-)’ denotes that the % imp. or avg. % imp. cannot be 
calculated. 

4.5. Comparison with TriPepSVM 

Likewise, to compare AIRBP with TriPepSVM, we ran TriPepSVM on 
three independent test datasets. While running TriPepSVM, we discov-
ered that it requires a Uniprot taxon id, which is by default set to 9606 
(for humans). This indicates that TriPepSVM must have been trained 
based on the species-wise dataset. We ran TriPepSVM on the three test 
dataset with human taxon id, and it performs very poorly on ATH and SC 
datasets. So, one of the limitations of TriPepSVM is that it does not apply 
to the datasets of new species. The performance of TriPepSVM using 
Human taxon id is shown in Table 8. 

From Table 8, we can conclude that TriPepSVM is not a generic 
method that can be applied to any species. Instead, it is strongly 
dependent on the Uniprot taxon id and will only perform well for 
particular species but not for any species. Therefore, we would like to 
highlight that the comparison between AIRBP and TriPepSVM is not an 
apple-to-apple comparison. From Table 8, AIRBP shows a very consis-
tent performance on all the test datasets compared to the TriPepSVM 

method. 

4.6. Time and memory costs of AIRBP 

AIRBP was implemented in Python (Scikit-learn libraries). We ran 
the experiments on a Linux server, which consists of 64 processors and 
128 GB of RAM. All 64 processors were utilized for training the proposed 
framework using a 10-fold cross-validation approach in parallel. Though 
it took approximately fifty-six minutes to train the AIRBP model, three 
independent test set predictions were quick and took approximately five 
minutes. 

To profile the memory requirement of AIRBP, we have used a python 
memory profiler. Fig. 5. shows the memory usage of the AIRBP for each 
second. It is evident from Fig. 5. that AIRBP requires 20,000 MiB or 
20.97 Gigabytes of memory for the model training. Further, from Fig. 5., 
it is also apparent that the initial high memory requirement is due to the 
base classifiers’ cross-validation step as the base classifiers utilize indi-
vidual copies of the same dataset to perform training in parallel. For 
meta classifier, the memory requirement reduces significantly. 

The above comparison of results indicates that the proposed method, 
AIRBP outperforms the existing methods and is a very promising pre-
dictor. We believe that this comprehensive investigation of the 
ensemble-based machine learning framework and features in predicting 
RNA binding proteins might be useful for future proteomics studies. 

5. Conclusions 

In this work, we constructed an ensemble-based machine learning 
framework, called AIRBP, for the prediction of RNA-binding proteins 
(RBPs) directly from the protein sequence. The existing experimental 
methods for determining RBPs for millions of new proteins are not 
practical due to the vast amount of possible interactions to be tested. 
Thus, it is highly desirable to have a computational tool to prioritize the 

Table 6 
Comparison between AIRBP and Imbalance Deep-RBPPred on three independent test datasets.  

Methods Dataset 
Evaluation Metrics 

SN (%) SP (%) BACC (%) ACC (%) FPR FNR PR (%) F1-score MCC 

Deep-RBPPred Imbalance Model 
Human 90.20 90.97 90.58 90.77 0.090 0.098 77.97 0.836 0.777 
S. cerevisiae 100.00 84.00 92.00 90.00 0.160 0.000 78.95 0.882 0.814 
A. thaliana 87.16 90.00 88.58 87.92 0.100 0.128 95.96 0.913 0.724 

AIRBP 

Human 94.12 94.44 94.28 94.36 0.056 0.059 85.71 0.897 0.860 
(% imp.) (4.35 %) (3.81 %) (4.08 %) (3.96 %) (60.71 %) (66.10 %) (9.93 %) (7.30 %) (10.68 %) 
S. cerevisiae 100.00 86.00 93.00 91.25 0.140 0.000 81.08 0.896 0.835 
(% imp.) (0.00 %) (2.38 %) (1.09 %) (1.39 %) (14.29 %) (-) (2.70 %) (1.59 %) (2.58 %) 
A. thaliana 90.83 90.00 90.41 90.60 0.100 0.092 96.12 0.934 0.775 
(% imp.) (4.21 %) (0.00 %) (2.07 %) (3.05 %) (0.00 %) (39.13 %) (0.17 %) (2.30 %) (7.04 %)  
(avg. % imp.) (2.85 %) (2.07 %) (2.41 %) (2.80 %) (25.00 %) (-) (4.26 %) (3.73 %) (6.77 %) 

The best score values are boldfaced. Here, ‘imp.’ stands for improvement. The ‘% imp.’ represents the improvement in percentage achieved by AIRBP for corre-
sponding independent test set for corresponding evaluation metric over the imbalance Deep-RBPPRed method. Likewise, the ‘avg. % imp.’ represents the average 
percentage improvement achieved by AIRBP for all independent test set for corresponding evaluation metrics over the imbalance Deep-RBPPRed method. Addi-
tionally, ‘(-)’ denotes that the % imp. or avg. % imp. cannot be calculated. 

Table 7 
Comparison between AIRBP and Balance Deep-RBPPred on three independent test datasets.  

Methods Dataset 
Evaluation Metrics 

SN (%) SP (%) BACC (%) ACC (%) FPR FNR PR (%) F1-score MCC 

Deep-RBPPred Balance Model 
Human 98.04 86.81 92.42 89.74 0.132 0.020 72.46 0.833 0.780 
S. cerevisiae 96.67 70.00 83.33 80.00 0.300 0.033 65.91 0.784 0.649 
A. thaliana 92.66 80.00 86.33 89.26 0.200 0.073 92.66 0.927 0.727 

AIRBP 

Human 94.12 94.44 94.28 94.36 0.056 0.059 85.71 0.897 0.860 
(% imp.) -(4.00%) (8.79 %) (2.01 %) (5.15 %) (135.71 %) -(66.10%) (18.29 %) (7.68 %) (10.26 %) 
S. cerevisiae 100.00 86.00 93.00 91.25 0.140 0.000 81.08 0.896 0.835 
(% imp.) (3.44 %) (22.86 %) (11.60 %) (14.06 %) (114.29 %) (-) (23.02 %) (14.29 %) (28.66 %) 
A. thaliana 90.83 90.00 90.41 90.60 0.100 0.092 96.12 0.934 0.775 
(% imp.) -(1.97 %) (12.50 %) (4.73 %) (1.50 %) (100.00 %) -(20.65 %) (3.73 %) (0.76 %) (6.60 %)  
(avg. % imp.) -(0.84 %) (14.72 %) (6.11 %) (6.90 %) (116.67 %) (-) (15.01 %) (7.57 %) (15.17 %)  
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study of new RBPs, which is tremendously important in treating various 
existing and emerging critical diseases such as cancer. Towards this, the 
proposed RBPs predictor, called AIRBP, can be utilized by the scientific 
community for accurate identification and annotation of new RBPs 
directly from the sequence. The experimental scientist can further study 
these newly identified RBPs to extract valuable insight into their specific 
biological roles and functions. 

To improve RNA-binding proteins’ prediction accuracy, we have 
investigated and used various feature extraction and encoding tech-
niques along with an advanced machine learning technique called 
stacking. We extracted multiple features, including evolutionary infor-
mation, physiochemical properties, and disordered properties, and 
applied different encoding techniques such as composition, transition 
and distribution, conjoint triad, PSSM distance transformation, and 
residue-wise contact energy matrix transformation to encode the protein 
sequence in terms of features. Next, the extracted features are used to 
train the ensemble of predictors at the first-level (i.e., base-layer) of the 
stacking method. Then, the prediction probabilities from the first-level 
predictors are combined and used to train the predictor at the second- 
level (i.e., meta-layer) of the stacking method. Finally, the majority 
vote from RBPPred, imbalance Deep-RBPPred, and the stacking model is 
considered for the prediction for RBPs. The proposed ensemble frame-
work achieves a 10-fold CV accuracy, balanced Accuracy, F1-score, and 
MCC of 95.84 %, 94.71 %, 0.928, and 0.899, respectively, on the 
training dataset. While performing the independent test, AIRBP achieves 

an accuracy, balanced Accuracy, F1-score, and MCC of 94.36 %, 94.28 
%, 0.897, and 0.860, for the Human test set; 91.25 %, 93.00 %, 0.896, 
and 0.835 for S. cerevisiae test set; and 90.60 %, 90.41 %, 0.934 and 
0.775 for A. thaliana test set, respectively. These promising results 
indicate that the ensemble framework helps improve the accuracy 
significantly by reducing the generalization error. Furthermore, 
compared to the existing better-performing method, Deep-RBPPred, the 
proposed AIRBP method achieves 23.15 % and 21.49 % improvement in 
terms of MCC based on the imbalanced and balanced training dataset, 
respectively. Moreover, the average percentage improvement, calcu-
lated over three different independent test sets, AIRBP outperforms 
imbalance Deep-RBPPred by 2.80 %, 2.41 %, 3.73 %, and 6.77 % in 
terms of accuracy, balanced accuracy, F1-score, and MCC, respectively. 
Similarly, AIRBP also outperforms the balance Deep-RBPPred model by 
6.90 %, 6.11 %, 7.57 %, and 15.17 % in terms of accuracy, balanced 
accuracy, F1-score, and MCC, respectively. 

These outcomes help us summarize that the AIRBP can be effectively 
used for accurate and fast identification and annotation of RNA-binding 
proteins directly from the protein sequence and can provide valuable 
insights for treating acute diseases. 
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