
Online Feature Selection for Semantic Image Segmentation

Rishav Rajendra
Canizaro Livingston Gulf States

Center for Environmental Informatics,
New Orleans, USA

email: rrajendr@uno.edu

Chris J. Michael
Naval Research Laboratory
Center Geospatial Sciences

Stennis Space Center
Mississippi, United States

email: chris.michael@nrlssc.navy.mil

Elias Ioup
Naval Research Laboratory
Center Geospatial Sciences

Stennis Space Center
Mississippi, United States

email: elias.ioup@nrlssc.navy.mil

Md Tamjidul Hoque
Canizaro Livingston Gulf States Center for Environmental

Informatics,
New Orleans, USA

email: thoque@uno.edu

Mahdi Abdelguerfi
Canizaro Livingston Gulf States Center for Environmental

Informatics,
New Orleans, USA

email: mabdelgu@uno.edu

Abstract— In this project, we classify each pixel from the
incoming stream of aerial imagery of water bodies as either
“land” or “water” in real-time. Traditional batch feature
processing techniques can be too slow to adapt to real-time
changes. This paper proposes an online distributed framework
for Semantic Segmentation using conditional independence to
discard irrelevant and redundant features to train a fast and
lightweight but accurate machine learning model. Through
extensive experimental results using aerial imagery of water
bodies, we demonstrate that our approach is faster than
existing online feature selection methods while maintaining
high accuracy.

Keywords - machine learning; semantic segmentation;
streaming images; feature selection.

I. INTRODUCTION

Traditional feature selection algorithms require all data-
points to be available and presented before the feature
selection process starts [6]. After all the features have been
collected, the feature selection process begins. This is not
always possible in the real world because we do not always
know where the end-point is. In this work, we aim to solve
this problem in terms of streaming aerial images of water
bodies. As images arrive, we generate candidate features
dynamically one at a time. We believe generating features
one at a time provides a greater practical advantage over
traditional feature selection. For example, in this research,
we classify each pixel in an aerial image of water bodies into
two classes: land and water. A single channel from the
smallest image in our dataset contains 468,784 pixels (706
weight × 664 height). The images we use have four channels
per image. As a result, the computational cost of generating
features from these images is high. We believe waiting for
the feature extracting process to complete before the learning
begins is not practical for a real-time use case. It is preferable
to generate features one at a time [10]. Online feature
selection seeks to select the minimal set of features from the
incoming features as they arrive while maintaining a high
overall model accuracy. Online feature selection stores all
the incoming data in two primary data structures: streaming
data structure and streaming features structure.

A preliminary distinction is needed between streaming
data structure and streaming features structures. For
streaming data structure, the number of features selected
remains the same throughout the entire feature selection
process. Still, the number of data instances increases over
time. However, in streaming features structure, the number
of data instances per feature is fixed, but the number of
features increases over time.

Let us assume an algorithm chooses five features for both
streaming data structure and streaming features structure
after the first image. Assuming the number of features
remains constant for streaming data structure but increases
by one for every subsequent image in streaming features,
even if the total number of features selected remains the
same with streaming data structure, the total number of data
instances across all five features will always increase after
every image. However, for streaming features structure, even
if we select five features after the first image and an
additional feature with every new image, we will have
significantly fewer data instances over time. Streaming
features structure will only be a problem if our feature
selection algorithm selects a very high number of features
from every image. Ideally, our feature selection algorithm
will choose only a small number of features giving streaming
feature structure a significant advantage.

Two notable research efforts have greatly contributed to
addressing the problem of online feature selection using a
streaming feature structure. Zhou et al. presented Alpha-
investing [15] for streaming feature selection. With Alpha-
investing, Zhou et al. mainly focused on controlling the
threshold during feature selection. Alpha-investing uses a p-
value from linear and logistic regression to dynamically
adjust the threshold while selecting new features. Alpha
being “invested” increases the wealth and threshold to allow
for a slight increase in the inclusion of incorrect features.
However, for every instance when a feature from the
dynamically generated stream is tested to be insignificant,
wealth is “spent” which reduces the threshold. Alpha-
investing can handle an infinite number of features, but only
evaluates each new candidate feature exactly once without
considering the redundancy of the selected features. On
highly redundant datasets like the one we are using, Alpha-

41Copyright (c) IARIA, 2021. ISBN: 978-1-61208-816-7

DATA ANALYTICS 2020 : The Ninth International Conference on Data Analytics

investing provides a very low and unstable prediction
accuracy.

Koller et al. proposed a classification of input features F
with respect to their relevance to a target T in terms of
conditional independence [5][6]. They propose a learner-
independent paradigm for feature subset selection, viewing
an induction algorithm as a biased method for approximating
the probability distribution of class labels given features and
transforming this distribution of class labels that the
induction algorithm attempts to approximate. They also
classify elements into three disjoint categories belonging to X
input features and their importance in C target class: (1)
strongly relevant, (2) weakly relevant, and (3) irrelevant. Yu
and Liu [13] improved this categorization by proposing a
definition of feature redundancy, therefore, creating a path
for efficient elimination of redundant features. For the
following definitions, let F be a full set of features, Fi

denotes the ith input feature, C denotes the target, and S = F
- {Fi} represent all input features excluding Fi.
Definition 1 (Conditional Independence) In a feature set F,
two features Fi and Fj are conditionally independent given
the set of features Z, if and only if

P(Fi|Fj,Z) = P(Fi|Z), denoted as Independent(Fi,Fj|Z).
Definition 2 (Strong relevance) Feature Fi is strongly
relevant to C if and only if

P(C|FiSi) ≠ P(C|Si).
Definition 3 (Weak relevance) Feature Fi is weakly relevant
to C if and only if

P(C|Fi,Si) = P(C|Si), and ƎSi ⊂ Si, such that
P(C|Fi, Si) ≠ P(C|Si).

A feature with weak relevance is not always in the final,
optimal feature subset, but ideally, it would be included.
Definition 4 (Irrelevance) Feature Fi is irrelevant to C if
and only if

∀S ⊆Si, P(C|Fi,Si) = P(C|Si).
Yu and Liu [13] proposed dividing features into

necessary and unnecessary features. In their definition
derived from the Markov blanket, redundant features provide
no additional information than features already selected, and
irrelevant features provide no useful information in the final
model.
Definition 5 (Markov blanket) Given a feature Fi, let Mi ⊂
F(Fi ∉ Mi), Mi is said to be a Markov blanket for Fi if and
only if

P(F – Mi - {Fi}, C|Fi, Mi) = P(F – Mi – {Fi}, C|Mi).
where C is the Markov blanket. We can eliminate
conditionally independent features from the selected
candidate feature set using the Markov blanket without
increasing the distance from the desired distribution [8].
Definition 6 (Redundant feature) Let G be the current set
of features. A feature is redundant and hence needs to be
removed from G if and only if there is a weak relevance and
has a Markov blanket Mi within G.

In another study, Wu et al. developed a new framework
that used feature relevance and a new algorithm called
Online Streaming Feature Selection (OSFS) [12]. OSFS uses
a two-step approach to discard irrelevant and redundant
features from the streaming features as they arrive. Based on

the definitions above, the entire feature set is divided into
four basic disjoint parts: (1) irrelevant features, (2) redundant
features, (3) weakly relevant but non-redundant features, and
(4) strongly relevant features. First, the framework conducts
an online relevance analysis, Definition 4, which determines
a new feature with respect to its relevance to the target T and
removes irrelevant ones. After that, the online redundancy
analysis, Definition 6, eliminates redundant features from the
features selected so far. These two steps are repeated one
after the other until a stopping criterion is satisfied.

In Section 2, we go through the dataset we used to test
our proposed frameworks, image augmentation and feature
extractions methods used, the online feature selection
framework used in this paper and the performance evaluation
metrics used to judge models. In Sections 3 and 4, we
discuss the results of proposed frameworks and the
conclusion respectively.

II. METHODS

In this section, we describe the approach for benchmark
and independent test data preparation, feature extraction,
performance evaluation metrics, and finally, the path we took
to establish the feature selection framework for semantic
image segmentation.

A. Dataset

The images used for this work are aerial imagery of
water bodies acquired during the agricultural growing
seasons in the continental US by the National Agriculture
Imagery Program (NAIP). NAIP is administered by the
USDA’s Farm Service Agency (FSA) through the Aerial
Photography Field Office in Salt Lake City. This “leaf-on”
imagery is used as a base layer for GIS programs in FSA’s
county service centers and is used to maintain the Common
Land Unit (CLU) boundaries.

NAIP imagery is acquired at a one-meter Ground Sample
Distance (GSD) with a horizontal accuracy that matches
within six meters of photo-identifiable ground control points,
which are used during image inspection.

We have a total of eight images. All images are captured
with four bands of data: red, green, blue, and near-infrared.
Every picture complies with the specification of no more
than 10 percent cloud cover per quarter quad tile, weather
conditions permitting. All imagery is inspected for horizontal
accuracy and tonal quality.

B. Image Augmentation

As we have a deficient number of images, eight, we used
various image augmentation techniques to increase the size
of the available dataset. A total of eight image augmentation
methods were used on each image channel.

The following image augmentation methods were
applied on each image channel in the dataset mentioned in
2.A:

a) Random Image Rotation Augmentation

b) Random Flip Augmentation

c) Random Shift Augmentation

42Copyright (c) IARIA, 2021. ISBN: 978-1-61208-816-7

DATA ANALYTICS 2020 : The Ninth International Conference on Data Analytics

d) Random Channel Shift Augmentation

e) Gray Scale

f) Random Brightness Adjustment

g) Random Contrast Adjustment

C. Feature Extraction

Feature extraction can provide new attributes. After each
image arrives and image augmentation methods are applied,
features are extracted dynamically from each augmented
image. Extracted features are then sent to the online feature
selection framework. We derive three main features from the
images: Gabor Kernel Features, Canny Edge Detector, and
Gaussian Blur.

a) Gabor Kernel Features: Gabor Kernel Features are
special classes of bandpass filters, i.e., they allow a specific
‘band‘ of frequencies and reject the others. Gabor kernel-
based features have been successfully and widely applied to
a broad range of image processing tasks like texture
recognition and face recognition [11]. This is because the
characteristics of the Gabor kernel, mainly the frequency
and orientation representations, are similar to those of the
human visual system [7]. We extracted the Gabor features
based on five parameters: (1) λ - Wavelength of the
sinusoidal component, (2) θ - The orientation of the normal
to the parallel stripes of the Gabor function, (3) ψ - The
phase offset of the sinusoidal function, (4) σ - The standard
deviation of the Gaussian envelope and (5) γ - The spatial
aspect ratio and specifies the ellipticity of the support of the
Gabor function. These five parameters control the shape and
size of the Gabor function.

b) Canny Edge Detector: Canny Edge Detection is
widely used in computer vision to locate sharp intensity
changes and to locate object boundaries in an image [3]. A
Canny Edge Detector classifies a pixel as an edge if the
gradient magnitude of the pixel is more significant than
those of pixels at both sides in the direction of maximum
intensity change. It is optimal, according to the three criteria
of proper detection, sound localization, and a single
response to an edge [3]. We extracted the features from
Canny Edge Detection using the OpenCV’s implementation
of the Canny Edge Detection algorithm [1]. The feature
extraction process goes through different stages like Noise
Reduction, finding the intensity gradient of the image, Non-
maximum suppression, and Hysteresis thresholding.

c) Gaussian Blur: Gaussian Blur reduces the noise and
detail of the image. This algorithm is applied to provide our
frameworks “bad” or distorted data to create a robust model
that can be reliable and used in real-life environments.

D. Online Feature Selection Framework

For real-time semantic image segmentation, we propose a
new framework that accepts an image stream, applies the
image augmentation techniques, extracts features from the
images, and discards irrelevant and redundant features
automatically. Due to the highly redundant images in our

dataset, we believe the online relevancy analysis and online
redundancy analysis from the OSFS framework [12] will be
able to select the least number of features from the entire
feature set while maintaining high and stable accuracy.

From a cold-start, OSSF initializes an empty feature set.
After an image is presented to the OSSF, all four channels in
the image are augmented one by one. Upon completion of
the augmentation, OSSF extracts the feature vectors from
the augmented image. While all features from the augmented
image have not processed, check if the feature is relevant or
not. If the feature is relevant, conduct the redundancy
analysis. If the relevant feature is not redundant with other
selected features, add the feature to the feature set. Process
the next feature from the augmented image. After all features
of that augmented image have been processed one-by-one,
move on to the next augmented image. After processing all
the augmented images, move on to the next channel of the
original image. After all, channels have been processed,
move to the next image from the data source until there are
no images, or a pre-set condition is reached.

Figure 1. The Online Semantic Segmentation Framework (OSSF).

We implemented our proposed framework, Figure 1, in
Python for testing. To determine a given features’
conditional independence, we used SciPy’s implementation
of the chi-square test of independence. The chi-square of
independence is used to determine if there is a significant
relationship between the features. Null-hypothesis of the chi-
square test is that there is no association between the
features. For the hypothesis test for the chi-square test of
independence, the test statistic is computed and compared to
a critical value. The critical value of the chi-square statistic is
determined by the level of significance, typically 0.05, and
the degrees of freedom. If the chi-square test statistic is
higher than the critical value, the null-hypothesis is rejected,
and the features are classified as conditionally independent.
In the redundancy analysis phase, we check if there is a
subset of features from the features selected so far, which is
conditionally independent of the class label. We again use

43Copyright (c) IARIA, 2021. ISBN: 978-1-61208-816-7

DATA ANALYTICS 2020 : The Ninth International Conference on Data Analytics

SciPy’s chi-square test implementation described above for
this functionality. If it is independent, then those features are
classified as redundant and discarded.

We believe our framework can be significantly improved
using a distributed approach. In a distributed environment,
data and jobs are divided across multiple clusters by a driver
program. A cluster is a group of computers that work
together essentially as a single system. In OSSF, after one
image arrives, we need to process all four of its channels
sequentially. Each channel produces multiple augmented
channels, and each augmented channel produces many
features. Until all the features of the augmented channel have
been produced one-by-one, the entire framework is
suspended before moving to the next augmented channel.
Even if a new image has already been presented to the
framework, it must wait for the previous image to finish
processing. This is very inefficient if the data-source is
sending images at a fast rate. To tackle this problem, we
propose D-OSSF, a distributed version of our framework
where images are processed as soon as they arrive
concurrently.

For D-OSSF, we use a Kafka producer to send images to
a Spark Streaming client. We designed the Kafka producer to
submit a new image to the Spark Streaming client every two
seconds. The Spark Streaming client loads in the images
using Spark’s built-in image source API into Resilient
Distributed Datasets (RDD). As the images continue to come
in, Spark Streaming client creates a continuous series of
RDDs, also known as a DStream. Each RDD in a DStream
contains images from certain intervals. The Spark engine
then transforms the DStream based on our online feature
selection framework [14]. The Spark engine handles the
underlying distribution operations on the DStreams and
provides a high-level API for convenience.

E. Performance Evaluation

To evaluate the performance of our framework, we
adopted a widely used 10-fold Cross-Validation (CV)
approach. In the process of 10-fold CV, the dataset is
segmented into ten parts. When one fold is kept aside for
testing, the remaining nine folds are used to train the
classifier. This process of training and test is repeated until
each fold has been kept aside once for testing, and
consequently, the test accuracies of each fold are combined
to compute the average [4]. AUC is the area under the
Receiver Operating Characteristics (ROC) curve, which is
used to evaluate how well a predictor separates two classes
of information (land and water in images). We used all the
performance evaluation metrics listed in Table 1 below, as
well as ROC and AUC, to test the performance of the
proposed framework and test it with the existing approaches.

TABLE I. NAME AND DEFINITION OF THE EVALUATION METRIC
Name of Metric Definition Formula
Accuracy (ACC) The ratio of samples

predicted correctly
out of the total
sample.

Balanced Accuracy
(BACC)

Average of recall and
specificity.

Precision (PR) The ability of the
classifier to not label
a negative sample
positive.

Average Precision
(AP)

Combines recall and
precision for ranked
retrieval results.

Recall Ability of the
classifier classifying
positive samples.

F1 Score Harmonic mean of
Precision and Recall.

For all definitions in Table 1, let TP be the number of
true positives, TN be the number of true negatives, FP be the
number of false positives, FN is the number of false
negatives, and Pn and Rn be the precision and recall at the nth
threshold respectively.

To test our sequential framework, we use default Scikit-
learn’s implementation of Logistic Regression (LR),
Random Forest (RF), and Decision Tree (DT) classifiers [9].
We also use the eXtreme Gradient Boosting (XGBC)
classifier by the Distributed (Deep) Machine Learning
Community (DMLC) group [2]. For our distributed
framework, we used default Logistic Regression, Random
Forest, and Decision Tree classifiers from Spark’s MLlib
machine learning library [14].

III. RESULTS

In this section, we demonstrate the results of our
sequential and distributed frameworks. We also compare our
frameworks with Alpha-investing as a benchmark. All
experiments were conducted on a computer with two AMD
Opteron™ Processor 4386 (3.1 GHz) and 62 GB RAM. All
frameworks were given the same sequence of images to
avoid any bias. All the experiments were run a total of five
times and averaged to minimize inconsistencies.

Figure 2. The number of features selected as image channels increase.

As seen in Figures 2a and 2b, both OSSF and D-OSSF
end up picking twelve features after the feature selection
process completed. We have eight images in our dataset and
four channels per image. Every channel leads to nine
augmented channels, and every augmented channel generates
32 features. So, both our frameworks, OSSF and D-OSSF,
select a subset of 12 features out of 9,216 available features
(8 images * 4 channels * 9 augmented channels * 32
features), thus discarding 99.87% of the incoming features.

44Copyright (c) IARIA, 2021. ISBN: 978-1-61208-816-7

DATA ANALYTICS 2020 : The Ninth International Conference on Data Analytics

Figure 2a also shows that the number of features selected in
the OSSF is exceedingly stable compared to D-OSSF in
Figure 2b. OSSF is more stable because channels are
processed one at a time. Features from a new channel are
only processed after the current channel has been fully
processed. So, the framework gets to run the online
relevancy analysis and the online redundancy analysis before
returning the selected feature set. In the distributed
framework, channels are processed concurrently. Features
than are passed to the online relevancy analysis in one of the
executors of the Spark ecosystem are added into the
candidate feature set and may not be able to go through the
redundancy test before another executor returns the feature
set. This is a classic example of concurrency where multiple
operations are happening at once. But this is not a problem as
the selected feature set goes through the redundancy analysis
eventually and discard the redundant features. This is proved
as the number of features selected at the end of the process
across multiple runs in both algorithms is equal. However,
the number of features chosen by Alpha-investing, Figure 2c,
goes up rapidly as the number of image channels increases.
This caused a memory overflow across multiple runs, and we
could not process the entire dataset due to hardware
limitations. The overflow in Alpha-investing usually occurs
in highly redundant datasets like the one we are using as it
does not conduct a redundancy analysis.

TABLE II. EVALUATION METRICS OF OSSF (IN %)
Model ACC PR BACC AP Recall F1 Score
DT 91.68 91.39 90.72 92.34 95.63 93.27
LR 91.71 91.39 90.73 92.16 95.72 93.30
RF 91.68 91.39 90.73 92.33 95.63 93.27
XGBC 91.71 91.39 90.72 92.34 95.63 93.27

The ACC of OSSF increases from 86.63% after the first
channel to 91.68% at the end for DT, RF and XGBC, a
5.51% increase. Similarly, the ACC of LR increases from
83.23% to 91.91%, a 9.25% increase. Other metrics follow a
similar trend. For DT, PR increases from 88.20% to 91.39%,
BACC increases from 86.06% to 90.72%, AP increases from
89.54% to 92.34%, Recall improves from 89.36% to
95.63%, and F1 Score increases from 88.63% to 93.27%. We
can see that the models learn and improve over time as they
gets more data. The performance of Alpha-investing was
very erractic with some models even reaching 0% for PR,
AP and Recall. Overall, Alpha-investing the metrics for
Alpha-investing started pretty high but sharply decreased as
the number of image channels increased.

TABLE III. EVALUATION METRICS OF D-OSSF (IN %)
Model ACC PR BACC AP Recall F1 Score
DT 90.45 90.72 90.45 90.25 95.25 94.82
LR 91.39 90.93 91.39 90.27 93.97 93.22
RF 89.95 90.72 89.95 91.01 94.87 93.22
XGBC 91.38 90.72 91.38 92.35 93.51 94.82

Evaluation metrics of D-OSSF, Table 3, follow similar
trends to OSSF results. The ACC of D-OSSF increases from

85.43%, 84.11%, 87.43%, and 86.49% to 90.67%, 91.23%,
89.73%, and 91.24% for DT, LR, RF and XGBC
respectively. That is a 5.78%, 7.85%, 4.17%, and 5.20%
increase respectively. For DT, PR increases from 88.73% to
90.72%, BACC increases from 85.39% to 90.45%, AP
increases from 87.98% to 90.25%, Recall improves from
89.05% to 95.25%, and F1 Score increases from 86.63% to
94.82%. D-OSSF’s distributed framework does not degrade
the performance of models and follows the performance of
OSSF very closely.

Figure 3. ROC AUC of all three frameworks.

From Figure 3a and 3b, we can see that both our
sequential and distributed frameworks achieve comparable
results. The AUC of ROC of OSSF, Figure 3a, goes from
0.88 after the first channel to 0.92 at the end for XGBoost,
Random Forest, and Decision Tree classifiers, a 4.16%
increase. The AUC of ROC of Logistic Regression goes
from 0.87 after the first channel to 0.92 by the end, a 5.06%
increase. Similarly, the ROC AUC of Decision Tree,
Logistic Regression, Random Forest and XGBoost in D-
OSSF, Figure 3b, go from 0.86, 0.88, 0.86, and 0.88 to 0.92,
0.91, 0.91 and 0.90 respectively.

Figure 4. Comparison between the run-time of our OSSF and Alpha-
investing.

From Figure 4b, we can see that the erratic nature of
Alpha-investing finally ends with the time taken to process
each channel going up rapidly before crashing on the fourth
channel. The processing time of OSSF, Figure 4a, remains
relatively constant as the number of channels increases.

45Copyright (c) IARIA, 2021. ISBN: 978-1-61208-816-7

DATA ANALYTICS 2020 : The Ninth International Conference on Data Analytics

Figure 5. Comparison between the run-time of OSSF and D-OSSF.

From Figure 5a, we can see that for OSSF, on average,
the Decision Tree classifier takes the least amount of time
with 25.53 seconds. Logistic regression is next on the line
with an average of 37.50 seconds. Random Forest takes
180.80 seconds, and XGBoost takes 257.00 seconds on
average. From Figure 5b, we observe that for D-OSSF, the
Decision Tree classifier again takes the least amount of time
with just 12.13 seconds on average, and Logistic Regression
takes 17.22 seconds. The Random Forest and XGBoost take
81.81 seconds and 118.34 seconds on average, respectively.
D-OSSF, on average, decreases the overall time taken by
almost 54% across all classifiers.

IV. CONCLUSIONS

Our aim with this project was to create a framework for
Online Semantic Segmentation, which takes in images on the
go, extracts, and selects a very low number of features while
maintaining a high of model accuracy in real-time. These
frameworks are especially important in unknown real-life
environments where we do not have previous knowledge of
the subject and images stream in as time progresses.

A. Summary

In this research work, two novel frameworks have been
developed. These two frameworks are summarized below:

a) Sequential Online Feature Selection Framework:
We developed a novel sequential framework for Online
Semantic Segmentation that accepts images one at a time,
extracts, and selects features on the go. This framework’s
final accuracy of 91.39% and average processing time per
image channel of 25.53 seconds with Decision Tree
classifier outperforms other online feature selection
algorithms. The 5.51% increase in accuracy over time also
proves that our framework can improve as the size of our
dataset increases.

b) Distributed Online Feature Selection Framework:
Using a distributed Spark ecosystem, we reduced the overall
run-time of our framework by almost 54% across all
classifiers. The distributed framework produces almost
exactly the same performance metrics and selects the same

number of features. With the final accuracy of 92.17% and
average processing time per image channel of just 12.13
seconds with Decision Tree classifier, we believe our model
can be used for real-time implementations.

B. Future Scopes

The frameworks proposed in this research are novel
approaches to online Semantic Segmentation by extracting
and selecting features on the go. As the size of datasets
grows, the importance of online feature selection will grow.
The methods used in this research work can also be applied
to other fields of computer vision, which require fast training
and deployment. We hope to inspire new research in the area
of distributed online feature selection across diverse fields.

REFERENCES

[1] G. Bradski and A. Kaehler, “Learning OpenCV: Computer
Vision With The OpenCV Library,” O’Reilly Media, Inc,
2008.

[2] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree
Boosting System,” Proceedings of the 22nd ACM Sigkdd
International Conference on Knowledge Discovery and Data
Mining, 2016, pp. 785-794.

[3] L. Ding and A. Goshtasby, “On The Canny Edge Detector,”
Pattern Recognition 2001, pp. 721-725.

[4] T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of
Statistical Learning,” Springer Series in Statics, 2009.

[5] G. H. Jogn, R. Kohavi, and K. Pfleger, “Irrelevant Features
and the Subset Selection Problem,” Machine Learning
Proceedings, 1994, pp. 121-129.

[6] D. Koller and M. Sahami, “Toward Optimal Feature
Selection,” Stanford InfoLab, 1996.

[7] C. Lee and S. Wang, “Fingerprint Feature Extraction Using
Gabor Filters,” Electronics Letters, 1999, pp. 288-290.

[8] J. Pearl, “Probabilistic Reasoning in Intelligent Systems”,
Networks of Plausible Inference, 2014.

[9] F. Pedregosa et al. “Scikit-learn: Machine Learning in
Python,” The Journal of Machine Learning Research 12,
2011, pp. 2825-2830.

[10] S. Perkings and J. Theiler, “Online Feature Selection Using
Grafting,” International Conference on Machine Learning,
2003, pp. 592-599.

[11] T. Weldon, W. Higgins, and D. Dunn, “Efficient Gabor Filter
Design For Texture Segmentation,” Pattern Recognition,
1996, pp. 2005-2015.

[12] X. Wu, K. Yu, H. Wang, and W. Ding, “Online Streaming
Feature Selection,” International Conference on Machine
Learning, 2010, pp. 1159-1166.

[13] L. Yu and H. Liu. “Efficient Feature Selection Via Analysis
Of Relevance And Redundancy,” Journal of Machine
Learning Research, 2004, pp. 1205-1224.

[14] M. Zaharia et al. “Apache Spark: A Unified Engine For Big
Data Processing,” Communications of the ACM, 2016, pp.
56-65.

[15] J. Zhou, D. Foster, R. Stine, and L. Ungar, “Streaming
Feature Selection Using Alpha-Investing,” Proceedings of the
Eleventh ACM SIGKDD International Conference on
Knowledge Discovery in Data Mining, 2005, pp. 384-393.

46Copyright (c) IARIA, 2021. ISBN: 978-1-61208-816-7

DATA ANALYTICS 2020 : The Ninth International Conference on Data Analytics

