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Abstract— We present a novel approach for the prediction of
Rogue Waves in oceans using Machine Learning methods. Since
the ocean is composed of many wave systems, the change from a
bimodal or multimodal directional distribution to unimodal one is
taken as the warning criteria. Further, we explore various features
that help in predicting Rogue Waves. The analysis of the results
shows that the Spectral features are significant in predicting
Rogue Waves. Finally, we propose a Random Forest Classifier
based algorithm to predict Rogue Waves in oceanic conditions.
For a range of windows, the proposed algorithm has accuracies
between 89.57% and 91.81%, and the balanced accuracies
between 79.41% and 89.03%. Moreover, we have also introduced
the publicly available buoy dataset, which can serve as a
benchmark dataset.

Keywords— rogue waves, nonlinear waves, spectral methods,
random forest, machine earning

1. INTRODUCTION

Rogue Waves are studied using various nonlinear
equations, which assume that wave energy gets focused on
these events and generates nonlinearity [1, 2]. Rogue Waves
are observed in hydrodynamics [3], optics [4], quantum
mechanics [5], Bose-Einstein condensates [6], and finance
[7]. They are mainly studied analytically using the spectral
algorithms applying some deterministic equations like the
nonlinear Schrodinger equation [8]. Rogue Waves may be
needed in fiber optics to satisfy certain energy levels and to
locate the information using matched filtering but they are
dangerous in oceans and present a danger to the safety of
marine operations. Examples of these events include the
sinking of Prestige [9], El Faro [10], and damage to the
Draupner platform [11]. To prevent these accidents, an early
detection system with precise emergence time of these events
is needed.

There are various methods for the early detection of
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nonlinear waves. For example, spectral techniques can be
used by measuring the super-continuum patterns in the
Fourier spectra before the Rogue Waves form. However,
checking the Fourier spectra solely would fail to give any clue
about the expected emergence point (or time) of a rogue wave
in a chaotic wave field. Although spectral methods have also
been proposed to include the time-dependent information
about the waves [12], the prediction time is only in the order
of seconds, which is not useful for avoiding exposure to the
large waves. Later, Birkholz et al. [13] proposed a
Grassberger-Procaccia nonlinear time series algorithm for the
prediction of Rogue Waves and have slightly improved the
time scale. Likewise, AD Cattrell [14] suggested that
Machine Learning/statistical methods could be used to
predict Rogue Waves using characteristic wave parameters.
To achieve the goal of forecasting Rogue Waves, it is
necessary to develop statistics based computational
approaches that can reliably and rapidly identify and forecast
Rogue Waves in chaotic wave fields like the oceans. In
contrast with the deterministic equations, such statistical
methods can be employed for predicting a wide range of
instabilities and can also help simulate the physics of the
equations without computing a set of equations periodically.
Some of the classical nonlinear evolution equations include
nonlinear Schrodinger equation [15], Korteweg-de Vries
equation [16], Kadomtsev-Petviashvili equation [17],
Zakharov equation [18] and fully nonlinear potential systems
[19]. However, such equations only describe a specific
instability, and using a set of equations every time to forecast
Rogue Waves is not possible for a continental/planetary scale
prediction. Since the ocean waves are often
bimodal/multimodal due to the presence of many wave-
systems, it is assumed that Rogue Waves are more likely to
occur when the distribution turns unimodal. Afterward, we

Authorized licensed use limited to: University of New Orleans. Downloaded on March 12,2022 at 02:11:38 UTC from IEEE Xplore. Restrictions apply.



used various Machine Learning classifiers to forecast Rogue
Waves.

II. POSSIBLE CAUSES OF ROGUE WAVES

Various methods for the formation of Rogue Waves have
been explored in the literature. Some of them include (a)
Linear Superposition, (b) Nonlinear effects, and (c) wind-
wave interactions.

A. Linear Superposition and weakly nonlinear effects

The most widely used theory for describing statistics of
the surface gravity waves is the Gaussian theory, which
assumes that waves are a linear phenomenon. However, the
theory fails to account for nonlinear effects. This theory
attributes the formation of large waves to linear superposition
of waves. Three mechanisms have been proposed to explain
how superposition occurs. First, the waves of different scales
and frequencies propagate at different speeds. Besides, waves
of the same scale propagate with different speeds depending
on their steepness. The waves can intersect and pile-up
resulting in a higher surface elevation. The wavefields with
the same frequency and same steepness can be focused and
superposed if they come from different angles [1]. This
phenomenon is also known as wave focusing. While focusing
is mostly linear, the last stage of the focused-wave dynamics
demonstrates various nonlinear behaviors when the steepness
is large enough [2]. Wave focusing due to directionality has
been found to be a regular cause for wave breaking in wave
tanks, which is associated with large waves [19]. If the waves
of the same scale come from different directions, then a
superposition of only two waves is needed to double wave
height and steepness. These conditions can produce regular
events with the height being the summation of two wave
heights [20] or, at certain angles, activate some mechanisms
of wave instability [21]. Linear superposition of waves is
most likely at small angles (which is not too dangerous) or at
angles close to 180 degrees, which have been shown to be
dangerous even at low significant wave heights [20]. Thus,
linear superposition remains one of the most likely
mechanisms behind the formation of large waves in the
oceans.

B. Nonlinear effects

A thorough description of different aspects of large waves
has been provided by Kharif ef al. [3]. The authors present
various possible causes behind Rogue Waves like wave
focusing and higher-order nonlinearities. One of the most
studied higher-order instability in wave systems is the
Benjamin-Feir instability (also called modulational
instability) due to third-order quasi-resonant interactions
between the free waves when the initial spectra represent
narrowband long-crested conditions [22]. The likelihood of
this mechanism is quantified by the Benjamin-Feir Index
(BFI) [23]. Favorable conditions for the instability can be
generated mechanically in wave tanks [11] or simulated
numerically [1]. Miguel Onorato [24] provided the first
experimental evidence that nonlinear wave statistics, mainly
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in the wave tanks and shallow water conditions, depend on
BFI. Likewise, from the results of Petrova and Guedes Soares
[25], it is known that, in general, the wave nonlinearity
increases with the distance from the wavemaker on
experiments on the wave tank. Numerical studies [26]
analyzing the effect of the directionality show that the wave
trains become increasingly unstable towards long-crested
conditions. However, the initial requirements for the
instability make this mechanism unlikely to be the primary
cause for most extreme wave occurrences in oceanic
conditions, characterized by the broader spectra and
directional spread [27]. It is important to note that the
nonlinear statistics of the following sea states observed are
usually lower than the mixed crossing seas with identical
initial spectra. The results for the distribution of the wave
heights corroborate the conclusion of Rodriguez [28] that the
existence of two wave systems of different dominant
frequencies but similar energy contents result in the reduction
of probability of wave height higher than the mean, and the
effect becomes more significant as the intermodal distance
increases. The higher-order wave nonlinearity is reported to
increase significantly with the observed probability of
occurrence of large wave events. It is also observed that the
high-frequency spectral counterpart for both following and
crossing seas shows a decrease in peak magnitude and
downshift of the peak with the distance, as well as a reduction
of the spectral tail when modulational instability takes place
[29]. Tt is possible to conclude that when the free wave
interactions become relevant, higher-order models are more
likely to predict Rogue Waves than the strictly linear ones. It
suggests the presence of nonlinear waves which occur due to
various nonlinear interaction between the wave components
also contribute to the formation of large waves. The result is
well confirmed by a recent numerical experiment by
Manolidis et al. [30].

C. Wind-wave interactions

During storms, locally generated wind waves combine
with the long period ocean swells to produce bimodal waves.
Wind waves are characterized by one spectral peak with one
significant wave height and one peak period. A bimodal
(double-peaked) spectrum is usually formed through the
combination of swell from a distant storm and locally
generated wind sea. Transformations of these wave systems
can be described in terms of wave crests, troughs, and wave
height distributions. Longuet-Higgins [31] proposed the
Rayleigh distribution of wave heights, and several
modifications have been made to the low wave-height
exceedance distributions. Specifically, a depth modified
version of the Rayleigh distribution was proposed by Battjes
and Groenendijk [32], which is applied only to the unimodal
waves. Similarly, Rodriguez [28] studied the wave height
probability distributions using extracted gaussian bimodal
waves from numerical simulations. The study classifies
bimodal seas as wind-dominated, swell-dominated, and
mixed-sea conditions. Likewise, Petrova and Guedes Soares
applied a linear quasi-deterministic theory to compare the
energies from wind and swell seas using a simplified Sea-
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Swell energy ratio (SSER) on the assumption of wave
nonlinearity [33]. Moreover, Norgaard and Lykke Anderson
developed a slope dependent version of Rayleigh distribution
based on an Ursell number criterion [34].

III. IDENTIFICATION OF ROGUE WAVES FROM NORMAL SEA
STATE

Ocean waves generally consist of more than one wave
system, identified as swell and sea component. To calculate
the unimodal sea state, we calculate the kurtosis and
skewness from the Discrete FFT derived from the time series
data at each frequency band. The assumption is that when the
energy gets focused, nonlinear effects occur, and a rogue
wave is more likely to occur. The focusing can sometimes
generate unimodal distributions when the initial conditions
are bimodal/multimodal which is reflected in skewness and
kurtosis.

The estimate of the kurtosis and skewness [35] is based
on integration over the frequency band 0.025 Hz to 0.580 Hz
on the bulk Fourier moments a,, b;, a,, b, weighted by the
energy density. Note that Fourier moments refer to the
coefficients of sines and cosines, which are calculated from
the waves after Fourier transform.
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In (1), the bulk Fourier moments are derived from
calculating the skewness and kurtosis. We take the
integration of the Fourier moments multiplied by energy [36]
and bandwidth. It is then normalized by dividing it with
variance calculated in (2). Afterward, we use (3) to (6) to find
different parameters, which are used to calculate skewness
and kurtosis. Subsequently, we calculate the skewness and
kurtosis in (7) and (8), respectively. Finally, the criteria

suggested by Kuik et al. [35] is used to determine the
unimodal distribution.

It is known that the skewness and kurtosis are very
sensitive to the secondary directional peaks and thus can be
used to identify bimodal/multimodal distribution from a
unimodal one. Although the Kuik et al. derived the equations
on the assumption of the unimodal distribution and described
the two peaked spectra as a warning criterion, we use the
same criteria because of its model-free attributes but define
the warning criteria as to when a unimodal distribution arises.
The criteria are given in (9) and (10).

kurtosis < 2 + |skew| and |skew| < 4

kurtosis < 6 and |skew| > 4

)
(10)

IV. COMPUTATIONAL METHODS FOR PREDICTION OF ROGUE
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WAVES

A. Dataset

The historical dataset of the oceanic waves around the
United States is collected via the Coastal Data Information
Program (CDIP) buoys and is available at the NOAA website
[37]. We used the data from January 2007 to October 2019
for the study. From the total data, we retain 754490 positive
points and 189345 negative points for the benchmark dataset.
Note that the data was shuffled before the training phase to
avoid any bias arising due to data collection.

For the forecasting of Rogue Waves, we divide 106
minutes (min) to four different steps of size 26.67 min
(1600s) each referred hereafter as a time window. The 26.67
min interval corresponds to the time for which the waves
contain at least 100 wave samples, are somewhat stationary,
and predictions can be made. The 106 min total time is the
setup of the study and may be extended.

B. Features

After applying Fast Fourier Transform (FFT) on the
directional spreading function [38], the resulting frequency
band with bandwidth bd, ,,, energy e;,, and mean wave
direction deg, ,, we get @y, b1y, Az p, by, per frequency
band n. The information can be summarized with (11).

bdi; ey1 degin aQin by Azz by
c- bd,, €12 deg,, %2 by, @22 by,
o : : I (11)
lbdlyn €in degin, %n by, 92n bz_nJ

We calculate the direction shape features from array C.
Rather than taking the values of the components directly from
C, We sought to calculate various features due to two reasons:
(a) to decrease the number of features and (b) to measure the
interactions between various frequency components of
waves.

Let X be a subset of array C, which has n = 64 rows and
m = 6 columns.
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The features used in this paper were derived from the
Fourier spectra of the Directional Spreading Function after
Discrete Fast Fourier Transform. It is important to note that
the buoys do not always measure the same frequency
components. It is thus necessary to derive the features that are
adaptable to varying frequency components length. Likewise,
these features also help reduce the number of features
significantly. The following features were derived from the
four Fourier moments.

Zmean(z minkowski(X[: i, X[: k) (13)
=t
Zmean o Z mean_c(X[i: j1)) (14)
; et
_1mean o Z median_c(X[i: j1)) (15)
L fer?
n_lmean o Z median_c(X_R[i: 1)) (16)
; fert
nz_lmean_c( z mean_c(X_R[i: /1)) (17)
i et
3 btoss "
%zn: skewness; (19)
=
%Zn: ers (20)
=
LS e, e

i=1

where mean_c and median_c refer to column-wise
mean and median respectively of the array derived from
Fourier coefficients at different frequencies. Likewise, X_R
refers to the array reversed in order, minkowski refers to the
Minkowski distance function. In (13), we calculate the mean
Minkowski  distances  between  various frequency
components, which helps identify various interactions
between the frequency components. It is used because it is the
generalization of Euclidean and Manhattan distances. The
values of k used are 0 and 1. The value of i and j vary from 0
to 64 and cover the frequency bands in the spectra from 0.025
Hz to 0.580 Hz. Likewise, (14), (15), (16), and (17) capture
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the information about the general shape of the directional
distribution. It is done by measuring the average mean and
median, which helps identify skewed distributions. The main
intuition behind the features is that Rogue Waves occur due
to various linear/nonlinear interactions between waves, and
thus, measuring how the mean and median fluctuates between
different frequency components interact should capture more
information about the Rogue Waves.

Moreover, it is to be noted that when modulational
instability occurs, it is characterized by the spreading of the
initial narrowband spectra. In such cases, when the wave-
wave interactions occur, it is common to observe that one
wave system grows at the expense of another. Thus, these
features should be helpful in identifying various
nonlinearities in the oceans.

Equation (18) and (19) define the normalized kurtosis and
skewness of the directional wave distribution. The equations
for calculating individual skewness and kurtosis per
frequency are given by (7) and (8). Likewise, (20) refers to
the normalized sum of energy, and (21) refers to the
normalized sum of directions of different frequency
components of Fourier spectra.

C. Results

In this section, we present the results of the experiments
that were carried out in this study. All the methods were
implemented using Python language. The Scikit-learn library
[39] was used for implementing the Machine Learning
algorithms. 10-fold cross-validation was used for testing the
classifiers. The window size of 26.67 mins is a standard for
most NOAA buoys for data archiving. We test Logistic
Regression (LogReg), K Nearest Neighbor (KNN), Random
Forest (RF), and Extra Trees (ET) for each window and
compare the performance.

1) Search for the best classifier for the time window 0-
26.67 min

TABLE I: PERFORMANCE OF CLASSIFIERS FOR 0-26.7 MIN

Methods LogReg KNN RF ET
Sensitivity (Sens) 0.9125 0.9233 0.9474 0.9339
Specificity 0.7570 0.7259 0.8332 0.8405
(Spec)

Balanced Accuracy 0.8347 0.8246 0.8903 0.8872
(Bal ACC)

Accuracy 0.8663 0.8646 0.9135 0.9061
(ACC)

FPR 0.2429 0.2741 0.1667 0.1594
FNR 0.0874 0.0766 0.0526 0.0660
Precision (Prec) 0.8988 0.8885 0.9308 0.9327
F1 0.9056 0.9055 0.9390 0.9333
McCC 0.6768 0.6685 0.7908 0.7751

Bold indicates the best performance.

From Table I, we can see that Random Forest performs
the best with a Sensitivity of 0.9474, Specificity of 0.83332,
Balanced Accuracy of 0.8903, Overall Accuracy of 0.9135,
FPR of 0.1667, FNR of 0.0526, Precision of 0.9308, F1
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0.9390, and MCC of 0.7908. Although Extra Tree performs ACC 0.7750 08822 | 0.8957 0.8847
better than the Random Forest Classifier on False Positive
Rate and Specificity, we choose Random Forest Classifier FPR 0-2058 0.3855 03444 03385
because it performs best on all other metrics. The best FNR 02300 0.0470 0.0408 0.0562
parameters for each classifier are given in Table II. Prec 0.9340 0.9034 0.9133 0.9134
F1 0.8441 0.9275 0.9356 0.6664
TABLE II: CLASSIFIER PARAMETERS FOR 0-26.7 MIN

Methods Best Parameters MCC 0.4815 0.6206 0.6664 0.6366

LogReg =10 Bold indicates the best performance.

KNN trees=1300

RF max_depth=50, min_samples_split=5, n_estimators=1000 From Table V, we observe that Random Forest

ET n_estimators=1000 outperforms all other classifiers with a Sensitivity of 0.9591,
LogReg = Logistic Regression, KNN = K Nearest Neighbors, RF = Random Specificity of 0.6555, Balanced Accuracy of 0.8073, Overall
Forest, and ET = Extra Tree. Accuracy of 0.8957, FPR of 0.3444, FNR of 0.0408,

Precision of 0.9133, F1 of 0.9356, and MCC of 0.6664. We
note that Logistic Regression, however, has the highest
Specificity and Precision and has the lowest False Positive
Rate. However, it does not outperform Random Forest on all

2) Search for the best classifier for time window 26.67
min to 53.34 min

TABLE III: PERFORMANCE OF CLASSIFIERS FOR26.6-53.3 MIN

the other metrics. Thus, we choose Random Forest as the best
Methods LogReg KNN RF ET . . . .
classifier. The best parameters for each classifier are given in
Sens 0.7755 0.9544 | 09621 | 0.9452 Table VI
Spec 0.7943 0.6369 0.6816 0.6957
Bal ACC 0.7849 0.7956 0.8219 0.8205 TABLE VI: CLASSIFIER PARAMETERS FOR 53.3-80 MIN
Methods Best Parameters
ACC 0.7796 0.8851 0.9009 0.8907 LogReg C=0.1
FPR 0.2056 0.3630 0.3183 0.3042 KNN : trees=1009 .
FNR 02244 0.0455 0.0378 03042 RF max_depth=10, min sarpples sght—Z, n_estimators=200
ET n_estimators=1000
Prec 0.9310 0.9039 0.9154 0.9175
F1 0.8461 0.9285 0.9324 0.6947
MCC 049339 0.6434 0.6947 0.6687 4) Searching for the best classifier for time window

80.01 min to 106.58 min

Bold indicates the best performance.

From Table III, we note that Random Forest performs the TABLE VII: PERFORMANCE OF CLASSIFIERS FOR 80-106.6 MIN
best with a Sensitivity of 0.9621, a specificity of 0.6816, Methods LogReg KNN RF ET
Balanced Accuracy of 0.8219, Overall Accuracy of 0.9009,
FPR of 0.3183, FNR of 0.0378, Precision of 0.9154, F1 of Sens 0.7657 0.9539 0-9699 0.9685
0.9324, and MCC of 0.6947. Note that Logistic Regression Spec 0.7915 0.6093 0.6182 0.6203
has the highest Precision and Sensitivity among all the Bal ACC 0.7709 0.7816 0.7941 0.7944
models tested and has the lowest False Positive Rate. ACC 0.7709 08840 0.9181 0.9172
However, we choose Rar}dom Eorest Clas51ﬁer because it p— 0.2084 03906 03817 03800
beats all the other classifiers in other metrics. The best
parameters for each classifier are given in Table IV. FNR 0.2343 0.0461 0.0300 0.0315
Prec 0.9352 0.9056 0.9363 0.9361
TABLE IV: CLASSIFIER PARAMETERS FOR 26.7-53.3 MIN Fl 0.8420 0.9291 0.9528 0.9522
Methods Best Parameters
LogReg =1 MCC 0.4706 0.6172 0.6493 0.6462
KNN trees=1200 Bold indicates the best performance.
RF max_depth=40, min_samples_split=10, n_estimators=800
ET n_estimators=1000 Table VII shows that Random Forest performs the best
with a Sensitivity of 0.9699. Specificity of 0.6182, Balanced
3) Search for the best classifier for time window 53.34 Accuracy of 0.7941, Overall Accuracy of 0.9181, FPR of
mins to 80.01 min 0.3817, FNR of 0.0300, Precision of 0.9363, F1 0.9528 and
MCC of 0.6493. Logistic Regression has the highest
TABLE V: PERFORMANCE OF CLASSIFIERS FOR 53.3-80 MIN Specificity and has the lowest False Positive Rate. However,
Methods LogReg | KNN RF ET it does not outperform Random Forest on all the other
metrics. Thus, we choose Random Forest as the best
Sens 0.7699 09529 | 09591 0.9437 classifier. The best parameters for each classifier are given in
Spec 0.7941 0.6144 | 0.6555 0.6614 Table VIIL.
Bal ACC 0.7820 0.7837 0.8073 0.8020
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TABLE VIII: CLASSIFIER PARAMETERS FOR 80-106.6 MIN

Methods Best Parameters

LogReg C=1
KNN trees=1300
RF max_depth=20, min_samples_split=2, n_estimators=1000
ET n_estimators=1200

We observe from the above results that the performance
of the classifiers increases when more features from the
Fourier Spectra are included. We note that Logistic
Regression, which is a weakly nonlinear model, can predict
Rogue Waves from the normal waves with a considerable
degree of accuracy. The results validate the conclusions of
Petrova and Soares that weakly nonlinear models are still
helpful to predict nonlinear effects [40] although nonlinear
methods like ET and RF have better prediction performance.
Likewise, since the Random Forest algorithm is very robust
to noise compared to Extra Trees Classifier, it performs the
best for all time windows explored in the paper. Moreover, as
the prediction time for forecast increases, the Balanced
Accuracy also decreases. It suggests that more features are
required to forecast Rogue Waves for longer time frames.

V. CONCLUSIONS

In this paper, we explored some Machine Learning
methods for forecasting rogue waves in oceanic waters rather
than using deterministic equations. Instead of using the
individual moments per frequency components from the buoy
data, we derived various features, which measure interactions
between various frequency components of a wave system.
The features allowed us to capture wave information with
fewer components. Among the Machine Learning classifiers
tested, although RF outperforms all the other algorithms, its
performance is similar to ET. We attribute the superior
performance of these methods to the underlying tree-based
algorithms, which capture nonlinear interactions between the
features and also robustness to noise due to the averaging of
the variance errors in RF. Moreover, since Random Forest
uses a greedy algorithm to select the best split instead of
randomly like in ET, it performs slightly better than ET.

With the use of model-free evaluation criteria, various
Spectral Features, and Machine Learning methods, the
warning time for Rogue Waves has been improved from the
scale of seconds/minutes to a scale of hours. Our future work
will focus on extending the forecasting time and improving
accuracies.
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