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ABSTRACT 

 
Understanding and predicting weather behavior is vital for 
informing pilots about changing flight conditions. This paper 
presents a new approach towards forecasting one component 
of weather information, wind speed, from data captured by 
airplanes in flight. We compare two datasets for prediction 
suitability, and a collinearity analysis between these datasets 
reveals a better model performance with smaller test error 
with one of them. We then apply machine learning and a 
genetic algorithm to process this data further and arrive at a 
competitive error rate. Finally, we create an offline software 
for wind prediction using the best performing classifier. 
 

Index Terms— Machine Learning, Weather 
Forecasting, Genetic Algorithm, kNN imputation, Linear 
Regression, Extreme Gradient Boosting, Sliding Window 
 

1. INTRODUCTION 
 
Air transport is the most popular form of transportation for 
long-distance travel in the US [1] and is a good resource for 
data. The data collected from an airplane during flight 
includes information about the aircraft’s position as well as 
meteorological and environmental measurements. These data 
are of great value for analyzing and predicting various natural 
conditions, like turbulence, which can assist the pilot and 
flight crew in making decisions about the future and avoid 
any possible mishap. In addition, these data can be used to 
monitor the flight progress and provide improved arrival and 
departure estimates to passengers. 

 
However, there are still limitations with the wind 

forecasts used in flight planning. Most of the available wind 

forecasts for US flights are based on the Wind Aloft Program 
from the US National Oceanic and Atmospheric 
Administration (NOAA) [2]. This program collects data via 
the recurring release of weather balloons and radar. The 
forecasts models then use linear interpolation to combine 
information from the available measurements [3]. However, 
there is evidence that this NOAA data may not be sufficient 
for making accurate predictions [4]. 

 
The NOAA data come from weather models that are fed 

with measurements from ground stations along with data 
from weather balloons, satellites, and other instruments. The 
wind data are available at different altitudes ranging from 
6,000 to 53,000 feet. They include information from 9 
different regions of America: Northeast, Southeast, 
Northcentral, South Central, Rocky Mountain, Pacific Coast, 
Alaska, Hawaii, and West Pacific [5]. 

 
Alternatively, the Atmospheric Carbon and Transport-

America (ACT-America) campaign from NASA covers 4 
seasons and 3 regions of the central and eastern United States 
and is based heavily on direct in-flight measurements. Using 
a variety of instruments, airplanes record their positional data 
as well as meteorological and environmental readings across 
a variety of surface and atmospheric conditions. The dataset 
includes 118 days of data with a temporal resolution of 1 
second. There is a total of 34 different features, including 
latitude, longitude, altitude, ground speed, air temperature, 
and wind speed and direction [6].  

 
Our objective is to choose the quality dataset from the set 

of above explained two groups, as a step forward in the 
direction of accurately forecasting the wind speed. 
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In this paper, we describe the results of model 
performances based on linear regression. Then we further 
cleanse the dataset and apply machine learning algorithms to 
derive useful information about the wind speed. We then 
calculate the wind velocity 10 minutes ahead and finally 
evaluate our performance and compare the results 
with some related works.  
 

2. BACKGROUND AND RELATED WORK 
 
A significant effort was put into understanding the relevant 
atmospheric phenomena and the methods employed by 
NOAA and NASA to collect and publish data for their 
respective programs. Historically, audio reports from pilots 
have been used in weather models for over half a century. 
However, the past 20 years have seen the trend of employing 
data from commercial aircraft to produce more accurate 
predictive models [7]. Efforts have also been made to develop 
machine learning models for the predictive analysis of 
airplane data to improve upon the existing NOAA forecasts. 
One of the major inspirations for this research is a similar 
project from Microsoft [3], in which they conduct a 
comparative analysis of possible approaches for wind 
prediction. We tried our best to find and use the identical 
dataset for a fair comparison. However, it was not publicly 
available. Therefore, we used NASA’s dataset, which was 
closely comparable and also open source. The results 
obtained from different approaches mentioned in the 
Microsoft Project are described in Table I. 

TABLE I.  RESULTS FROM THE MICROSOFT PAPER 

Approach 
RMS 
Error 

NOAA data 51.53 

Gaussian Process Estimate 50.93 

Gaussian Process + Airplane Data 43.66 

 
 

3. METHODOLOGY 
 
3.1. Dataset – NOAA data vs. Airplane data 
 
Two different sets of data were considered in our research: 
NOAA’s Wind Aloft Program and NASA’s ACT-America 
project. In order to determine the superiority of one over the 
other, a comparative analysis was performed using the 
correlation coefficients of both dataset’s features with respect 
to wind speed. We applied Pearson’s Correlation Coefficient 
as a matrix to find the Root Mean Square Error (RMSE) for 
training and testing cases. The dataset with the minimum test 
error was selected for further analysis.  

 
In the case of the NASA dataset, the original set of 34 

features was reduced down to 6 by selecting only the features 
most strongly correlated to wind speed, wiz., Mach Number, 

Ground Speed, Track Angle, Drift Angle, Static Air 
Temperature and Wind Direction. For the NOAA data, since 
there are only a few features provided (direction, temperature, 
latitude, longitude, and altitude), all were included. The 
NOAA data was trained using 10 fold cross-validation at all 
170 different site locations at 30,000 feet height. A sample 
data of the first 3 days from the airplane data was also trained 
using 10 FCV. The RMSE, using Linear Regression, for both 
sources are given in Table II. Since the airplane data look 
much promising and have more features and observations 
than the NOAA data, our research thereafter focused only on 
airplane data. 

TABLE II.  RMSE FOR TRAINING AND TEST DATASETS 

Source #Observation RMSE 

Wind Aloft 170 20.0503 

ACT-America 45126 31.9042 

 
3.2. Data Analysis and Cleansing 
 
We began preprocessing our airplane dataset by sampling 
data from 5 days (selected randomly) having a reasonable 
number of input rows. The random sampling approach was 
employed because it gives an equal probability of selection 
for each element in the full dataset, thereby reducing the 
probability of biased results.  

 
A deeper analysis of the available dataset revealed that 

more than 72% of the total rows had one or more missing 
fields. Almost 23–41% of the columns had missing values. 
This suggested that the available dataset is noisy. Simply 
dropping the rows with missing values would have been 
undesirable since it would mean losing a sizeable fraction of 
the data and potentially decreasing overall accuracy. We thus 
required a technique that could address gaps in data without 
losing samples. 

 

Fig. 1. Corresponding RMSE for different k values. 
 
We adopted the very popular technique of replacing 

missing values called kNN imputation. Based on the kNN 
algorithm, kNN imputation is widely known because of its 
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great performance in machine learning applications. Here, the 
average of the k nearest neighbors at a fixed distance is used 
as the imputation estimate. We used Euclidean distance as the 
fixed distance parameter. The value for k was decided after 
computing the root mean squared error (RMSE) for a range 
of different values, from k = 10 to 1,500, as shown in figure 
1. Our result showed the minimum RMSE of 6.177 at k = 500. 
Therefore, k = 500 was used for imputing the missing values 
in the dataset. 
 
3.3. Feature Selection and Filtering 
 
Careful feature selection and filtering was a critical step of 
this research as we wanted to retain only the useful variables 
that are most related to the wind speed feature. For the feature 
selection process, we used the powerful genetic algorithm 
(GA) approach. Although we had calculated the Pearson’s 
Correlation Coefficient in the previous step, we still use GA 
as it gives a clear idea of feature selection without requiring 
expertise about the project’s domain and inclination. For 
instance, we can determine whether the Mach number of an 
airplane is highly correlated to wind speed without 
necessarily understanding the principles behind that variable. 

 
Two algorithms — Extreme Gradient Boosting 

(XGBoost) and Linear Regression — were used to analyze 
the fitness function, and the better algorithm was selected 
based on the output MSE. Our GA ran for 300 generations for 
both fitness function algorithms. The following standard 
parameters were set for our GA: Population Size of 20, 
Crossover Rate of 80%, Mutation Rate of 5%, and Elite Rate 
of 10%. 

 
At the end of 300 generations, XGBoost gave a total of 

6 fittest chromosomes: indicated airspeed, Mach 
number, track angle, roll angle, potential temperature, and 
wind direction. Linear regression gave a total of 10: 
latitude, GPS altitude, ground speed, vertical speed, true 
heading, pitch angle, static pressure, sun azimuth, partial 
pressure water vapor, and saturated vapor pressure H2O. 

 
Since XGBoost reduced the number of chromosomes to 

6 and obtained a fitness score (28.91) far better than linear 
regression (42.24), it was the better performer. Therefore, for 
prediction, we examined only these 6 features plus the wind 
speed. 
 
3.4. Sliding Window 
 
After filtering and noise reduction, we approached the time 
series forecasting with the sliding window technique. This 
approach takes a set of observations sequential in time and 
creates a model to fit in historical data. The model then 
predicts future outputs based on factual evidence. 

 

The first step consisted of selecting the sliding window 
size. We considered a set of window sizes, ranging from 2 to 
15. Again, RMSE was the deciding factor. After calculating 
the RMSE using two regression algorithms, XGBoost, and 
linear regression, we again decided on using XGBoost, in 
which the least RMSE was obtained at window size 9, figure 
2. The least RMSE using linear regression was obtained at 
window size 10. For consistency, however, and considering 
the 1-second resolution of the data, we settled on a window 
size of 9 for both algorithms. 

 

 
Fig. 2. RMSE values obtained from using XGBoost and Linear 
Regression. 
 
3.4. Prediction  
 
Through this research, we wanted to predict the wind speed 
in the near future that can be used by pilots or flight 
schedulers to make decisions about flights ahead of time. 
Since our dataset had a resolution of one second, rescaling 
was needed. So we took an average of every six hundred lines 
(10  60 seconds) in each file from the best performing 
window size 9 and generated a new dataset, which then had a 
resolution of ten minutes. The decision to choose a standard 
period of ten minutes was made as a result of retaining a 
decent number of points even after scaling. The total data 
points at the end of rescaling were 2127. 
 

We then used the newly created dataset to train our 
prediction model with different classifiers. The models were 
fed with features from one datapoint and mapped to the 
windspeed of the following datapoint. The classifiers were 
trained with the wind speed of one step ahead in time. The 
RMSE in each case is as illustrated in Table III. The best 
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performing classifier (i.e., Random Forest) was used to create 
an offline tool1 to predict wind speed.   

TABLE III.  MODEL PERFORMANCE ON TRAINING DATA 

Classifier RMSE 

Linear Regression 6.538 

KNN 10.066 

Random Forest 5.540 

Bagging 6.236 

 
4. RESULT AND COMPARISON 

 
In this paper, we presented a method of improving dataset 
quality towards predicting the speed of one of the important 
atmospheric phenomena, wind. Our approach is valuable and 
general enough for use in similar cases and datasets. We were 
able to create a basic forecast model that can predict the wind 
speed ten minutes ahead of time. We had intended to further 
the project by creating a basic predictive model for at least 30 
minutes ahead. Still, there was a limitation in a number of 
data points as a result of averaging with better accuracy. 
Nevertheless, we continue to get competitive results at each 
step, as demonstrated in Table IV. 

TABLE IV.  RMSE AT DIFFERENT STAGES OF THE PROJECT 

State Datapoints RMS Error 

Initial State 45126 31.904 

After kNN Imputation 78023 6.177 

After Sliding Window 1595422 5.775 

After Training Model 2127 5.540 

 
Our RMSE obtained at different stages of the project 

show a significant improvement. Recall that the best RMSE 
obtained by Microsoft’s project discussed earlier was 43.66. 
This is a good indication that our project is headed in the right 
direction.  

 
5. CONCLUSIONS AND FUTURE WORK 

 
The number of commercial and military aircraft flying each 
day is massive and only expected to increase. Applying the 
in-flight data these aircraft collect to wind speed prediction 
can be efficient and cost-effective. 

 
This wind model is also closely related to turbulence 

experienced in flight, which depends on the wind speed at a 
particular position and altitude. We can, therefore, extend this 
project to create a predictive model that can be used to 
optimize flight time based on wind speed. Improving wind 

 
1 https://github.com/astha1015/Wind_Predict   

speed models also has applications in the creation of more 
fuel-efficient aircraft designs. Nevertheless, the result of this 
project is impeccable when compared to that of the NOAA 
and Microsoft models (Table V).  

TABLE V.  OUTPUT COMPARISON 

Projects RMS Error 

Wind Aloft from NOAA  51.53 

Microsoft Research Project 43.66 

Our Project 5.54 

 
Current airplane flight planner applications are using 

weather information from the NOAA-based Wind Aloft 
program, which is quite noisy and less accurate. With a better 
system in place, keeping track of flights can help manage 
arrivals and departures more efficiently and assist in making 
decisions about flight schedules. 
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