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A B S T R A C T

Carbohydrate-binding proteins play vital roles in many important biological processes. The study of these
protein-carbohydrate interactions, at residue level, is useful in treating many critical diseases. Analyzing the
local sequential environments of the binding and non-binding regions to predict the protein-carbohydrate
binding sites is one of the challenging problems in molecular and computational biology. Existing experimental
methods for identifying protein-carbohydrate binding sites are laborious and expensive. Thus, prediction of such
binding sites, directly from sequences, using computational methods, can be useful to fast annotate the binding
sites and guide the experimental process. Because the number of carbohydrate-binding residues is significantly
lower than the number of non-carbohydrate-binding residues, most of the methods developed for the prediction
of protein-carbohydrate binding sites are biased towards over predicting the negative class (or non-carbohy-
drate-binding). Here, we propose a balanced predictor, called StackCBPred, which utilizes features, extracted
from evolution-driven sequence profile, called the position-specific scoring matrix (PSSM) and several predicted
structural properties of amino acids to effectively train a Stacking-based machine learning method for the ac-
curate prediction of protein-carbohydrate binding sites (https://bmll.cs.uno.edu/).

1. Introduction

Organisms need four types of molecules: nucleic acids, proteins,
carbohydrates (or polysaccharides) and lipids for life, which are usually
referred to as the molecules of life. Carbohydrates are often considered
as the third important molecule of life, after DNA and proteins [1].
Carbohydrate interacts with many different protein families which in-
clude lectins, antibodies, sugar transporters and enzymes [2]. Protein-
carbohydrate interactions are responsible for various biological pro-
cesses, including intercellular signaling, cellular adhesion, cellular re-
cognition, protein folding, subcellular localization, ligand recognition
and developmental process [3–5]. In fact, carbohydrate of one or the
other type generally covers living cells in all organisms [6]. These
carbohydrates play important roles in the defense of human cells
against pathogens [7]. Moreover, some pathogens such as influenza use
these carbohydrates on the outside of the human cell to gain entry [8].
The proteins, which recognize and bind to the cell-surface carbohy-
drates, are useful as biomarkers or drug targets [8–11]. The study of
protein-carbohydrate interactions is usually carried out by experi-
mental techniques including X-ray crystallography, nuclear magnetic

resonance (NMR) spectroscopy study, molecular modeling, fluores-
cence spectrometry, and dual polarization interferometry. However,
protein-carbohydrate interactions are challenging to study experimen-
tally because of the weak binding affinity and synthetic complexity of
individual carbohydrates [6]. Therefore, the prediction of protein-car-
bohydrate interactions through a computational approach becomes
essential. This motivates us to develop an effective computational
predictor for effective identification and characterization of protein-
carbohydrate binding sites.

The study of protein-carbohydrate interactions using computational
methods mainly focuses on locating the sites of proteins that bind to
carbohydrates. One of the promising computational techniques is
docking. Docking methods are often used to predict the orientation of
the carbohydrate in the binding site [2]. On the other hand [12], pro-
posed a first bioinformatics approach for predicting protein-carbohy-
drate binding sites from a known protein structure. In their work, six
parameters of amino acids were evaluated, which include solvation
potential, residue propensity, hydrophobicity, planarity, protrusion,
and relative accessible surface area. A simple combination of three of
the parameters (residue propensity, protrusion, and relative accessible
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surface area) out of six was found to distinguish the observed binding
sites with an overall accuracy of 65% for a set of 40 protein-carbohy-
drate complexes. A continuous surface pocket interacting with protein-
probes was considered binding sites. Nassif.et al. proposed a glucose-
binding site classifier that considers the sugar-binding pocket as a
spherical spatio-chemical environment and represents it as a vector of
geometric and chemical features which includes charges, hydro-
phobicity, hydrogen bonding and more [13]. They employed random
decision forests for feature selection and used selected geometric and
chemical features to train the support vector machines (SVM) for pre-
dicting protein-glucose binding sites. Tsai.et al. predicted binding sites
by employing three-dimensional probability density distribution of in-
teracting atoms in protein surfaces as input to the neural networks and
SVM [14]. In the recent past, an energy-based approach for the iden-
tification and analysis of binding sites residues in protein-carbohydrate
complexes has been proposed [15]. Through this study, it was found
that 3.3% of residues are identified as binding sites in protein-carbo-
hydrate complexes whereas the binding site residues in protein-protein,
protein-RNA, and protein-DNA complexes are 10.8%, 7.6%, and 8.7%
respectively. Furthermore, the binding propensity analysis performed
in this study indicates the dominance of Tryptophan (TRP) amino acid
to interact with the carbohydrates through aromatic-aromatic interac-
tions. More recently, Shanmugam et al. proposed a method to identify
and analyze the residues, which are involved in both the folding and
binding of protein-carbohydrate complexes [16]. Stabilizing residues
were identified by using the knowledge of hydrophobicity, long-range
interactions, and conservations, as well as binding site residues, were
identified using a distance cutoff of 3.5 Å between heavy atoms in
protein and ligand. Residues, which were common in stabilizing and
binding, were termed as key residues. Some of the interesting findings
of the work indicate that most of the key residues are present in β-
strands and polar and charged residues have a high tendency to serve as
key residues.

The structure-based methods discussed above, rely on protein
structures that are often not available, which makes the sequence-based
method inevitable. The first sequence-based method for protein-car-
bohydrate binding sites prediction was developed by Malik and Ahmad
in 2007 [8]. In their work, Malik and Ahmad used only the evolutionary
attributes called PSSM as input to the neural network to create a pre-
dictive model. Their method achieved an average of 87% sensitivity
and 23% specificity while tested by leave-one-out technique on a da-
taset of 40 protein-carbohydrate complexes. After a year less than a
decade, Taherzadeh et al. [6] proposed a method, called SPRINT-CBH,
which used PSSM profiles with additional information on sequence and
predicted solvent accessible surface area as features to develop an SVM
based predictor in 2016.

As reported, SPRINT-CBH achieved an average of 18.8% sensitivity
and 99.6% specificity while tested using 10-fold cross-validation (CV)
on a dataset of 102 protein-carbohydrate complexes and 22.3% sensi-
tivity and 98.8% specificity while tested using independent test set of
50 protein-carbohydrate complexes. Both the aforementioned methods
suffer from the problem of imbalanced prediction accuracies. These
methods either yield high sensitivity and low specificity or vice versa.
Thus, the existing methods are limited in their ability to effectively
predict binding sites and explain how protein-carbohydrate interaction
occurs. Therefore, it becomes essential to identify new features and
effective machine learning techniques that can help in improved
binding site prediction as well as help interpret protein-carbohydrate
interactions. One of the reasons why both predictors suffer from im-
balance prediction accuracies could be that some of the features used in
these studies might be negatively impacting the sensitivity of the pre-
dictor. In our study, we found that the Secondary Structure features
were affecting the prediction accuracy negatively. Therefore, we ex-
cluded Secondary Structure features from our feature set. We strongly
believe lack of exploration of different features and using the most re-
levant features to obtain the predictions makes a significant

improvement in the quality of the predictor.
While there are still very few methods for predicting protein-car-

bohydrate binding sites, many other methods have been established for
the binding site and binding proteins prediction in the area of protein-
protein [17–20], protein-peptide [21–24], protein-DNA [25–28], pro-
tein-RNA [29–32] and protein-ligand [33–36] interactions. Several of
the aforementioned sequence-based methods have shown that the use
of evolution-derived and predicted sequence and structure-based fea-
tures can significantly improve the overall performance of the binding
sites prediction.

In this study, we investigated different descriptors, which include
information extracted from the evolutionary profile as well as predicted
sequence and structural properties. Moreover, we examined various
machine learning approaches to develop a sequence-based unbiased
and balanced predictor of non-covalent protein-carbohydrate binding
sites. Useful feature groups were selected to build a Stacking-based
classifier called StackCBPred. The StackCBPred was trained and cross-
validated by 100 carbohydrate-binding proteins and independently
tested by two different test sets containing 50 and 88 proteins with
known high-resolution protein-carbohydrate complex structures, re-
spectively. As the dataset contain significantly more non-binding re-
sidues than binding residues, StackCBPred was trained with a balanced
dataset obtained by employing the under-sampling technique to design
a more balanced predictor. The development of StackCBPred offered a
significant improvement in sensitivity and balanced accuracy based on
the benchmark and independent test data when compared to the ex-
isting sequence-based binding predictor. We believe that the superior
performance of StackCBPred will motivate the researchers to use this
method to identify protein-carbohydrate binding sites directly from
sequence and utilize the outcomes for drug targeting. In addition, the
stacking-based machine learning technique and features proposed in
this work could be applied to solve various other biologically important
problems.

2. Methods

In this section, we describe the approach taken to prepare bench-
mark and independent test data sets, feature extraction, feature selec-
tion, performance evaluation, and machine learning framework devel-
opment.

2.1. Dataset

We collected the benchmark dataset [6] that contains a total of 102
high-resolution carbohydrate-binding protein sequences. However, in
our implementation, we only used 100 high-resolution carbohydrate-
binding protein sequences for training and cross-validation as two of
the sequences contain non-standard amino acid and the physicochem-
ical properties of the non-standard amino acids could not be obtained.
Furthermore, we collected an independent test dataset [6] to compare
the performance of StackCBPred with the existing predictor. This da-
taset consists of 50 high-resolution carbohydrate-binding protein se-
quences, of which 49 were used in our implementation, discarding one
for having the nonstandard amino acids in the sequence information.
Here and after we represent this test dataset as TS49.

From the benchmark dataset of 100 sequences, we obtained a total
of 26,986 residues, of which, 1028 residues are binding, and the rest are
non-binding. To avoid bias caused by many non-binding residues, a
balanced dataset was prepared following an under-sampling approach
[37] by randomly selecting a number of non-binding residues equal to
the number of binding residues. This resulted in a benchmark dataset,
which consists of 1028 binding and an equal number of non-binding
residues. From TS49 sequences, we obtained a total of 13,738 residues
of which 508 residues are binding and the rest are non-binding. Using a
similar under-sampling approach as above, a balanced independent test
set was prepared which consists of 508 binding and an equal number of
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non-binding residues.
To further test the performance of our predictor, we collected an

additional dataset PROCARB604 from PROCARB [38] database. The
proteins whose ID's matched to the protein ID's that were present in
either the benchmark or the independent test dataset mentioned above
were removed from this new dataset. Next, the redundant proteins with
a sequence identity cutoff of ≥ 30% according to BLAST-CLUST [39]
were removed. Finally, the dataset, which consists of 88 protein-car-
bohydrate complexes was obtained. Here and after we represent this
dataset as TS88. This new TS88 dataset consists of 688 binding residues.
Using an under-sampling approach, we prepared a balanced dataset
which contains 688 binding and an equal number of non-binding re-
sidues. In addition to evaluating our predictor on balanced validation
and independent test datasets, we evaluated our predictor on im-
balanced (full) validation and independent test datasets.

2.2. Feature extraction

We collected various useful features which include information
extracted from the evolutionary profile as well as predicted sequence
and structural properties of proteins, which we described in this sec-
tion.

2.2.1. Position specific scoring matrix (PSSM) and monogram (MG)
PSSM captures the evolution derived information in proteins.

Evolutionary information is very impactful for protein function anno-
tation in biological analysis and is widely used in many studies
[21,26,40–43]. Furthermore, evolutionarily conserved residues are
found to play crucial functional roles such as binding [44]. For this
study, we obtained the normalized PSSM values for every residue in
protein sequence from DisPredict2 [41,42] program. DisPredict2 in-
ternally executes three iterations of PSI-BLAST [21,45] against NCBI's
non-redundant database to generate a PSSM profile and subsequently
converts it to normalized PSSM by dividing each value by a value of 9.
PSSM is a matrix of L × 20 dimensions, where L is the length of the
protein. The rows in PSSM represent the position of amino acid in the
sequence, and the columns represent the 20 standard amino acid types.
Hence, every residue in the protein sequence is encoded by a 20-di-
mensional feature vector. In addition, the PSSM score was further ex-
tended to compute monogram feature [46,47], which is obtained by
taking the sum of the scores over the length of the protein for 20
standard amino acid types. This resulted in 1 feature for every amino
acid.

2.2.2. Accessible surface area (ASA) and secondary structure (SS)
ASA and SS are predicted structural features that are found to be

highly effective for binding sites prediction. We used the DisPredict2
program to obtain predicted ASA and SS probabilities for helix, coil,
and beta-sheet at the residue level. DisPredict2 internally uses a pro-
gram called SPINE-X [48] to predict ASA and SS probabilities directly
from the protein sequence.

2.2.3. Half sphere exposure (HSE) and torsion angles
HSE is a measure of protein solvent exposure that was first in-

troduced in Ref. [49]. HSE measures how buried amino acid residues
are in protein conformation. The calculation of HSE is obtained by di-
viding a contact number (CN) sphere into two halves by the plane
perpendicular to the Cβ-Cα vector. This simple division of the CN sphere
produces two different measures, called HSE-up and HSE-down. In this
study, we used these two measures as features that were extracted from
the SPIDER3 program [50–52]. Additionally, protein backbone struc-
ture can be described by torsion angles Phi (φ) and Psi (ψ). This local
structure descriptor is important for understanding and predicting
protein structure, function, and interactions. In our study, we employed
predicted φ and ψ angles as features that were also extracted from
SPIDER3 program.

2.2.4. Physiochemical properties
We obtained seven representative physiochemical attributes of the

amino acids, which include steric parameters, hydrophobicity, volume,
polarizability, isoelectric point, helix probability, and sheet probability
[53]. As these features are inherently encoded within DisPredict2, we
directly extracted these features from the DisPredict2 [41].

2.2.5. Molecular recognition features (MoRFs)
Post-translational modifications (PTMs) can induce disorder-to-

order transitions of intrinsically disordered proteins (IDPs). IDPs can
transition from disorder to order due to binding to other proteins, nu-
cleic acids, lipids, carbohydrates and other small molecules [54,55].
MoRFs are critical to the biological function of IDPs located within long
disordered protein sequences [56–58]. Thus, to inherently capture
functional properties of IDPs which may bind to carbohydrates, we
employed a single predicted MoRFs score as a feature in this work. We
obtain the MoRFs feature from OPAL [57].

2.3. Performance evaluation

The performance of the StackCBPred was evaluated by 10-fold CV as
well as using the independent test. In 10-fold CV, the dataset is seg-
mented into 10 parts, which are each of about equal size. When a fold is
set aside for testing, the other 9 folds are used to train the classifier.
This process is repeated until each fold has been set aside once for
testing and then the test accuracies of each fold are combined to find
the average [59]. On the other hand, to perform the independent test,
the classifier is trained with the validation dataset and then tested using
the independent test dataset. We used various performance evaluation
metrics listed in Table 1 to test the accuracy of our proposed method as
well as to compare it with the existing method.

In addition, we used AUC and ROC performance evaluation metrics.
AUC is the area under the receiver operating characteristics (ROC)
curve and is used to evaluate a predictor to see how well it separates
two classes of information, which is, in this case, carbohydrate-binding
and non-binding residues.

2.4. Framework of StackCBPred

The idea of stacking based machine learning technique [60] which

Table 1
Name and definition of the evaluation metric.

Name of Metric Definition

True Positive (TP) Correctly predicted carbohydrate-binding residues
True Negative (TN) Correctly predicted non-carbohydrate binding

residues
False Positive (FP) Incorrectly predicted carbohydrate-binding residues
False Negative (FN) Incorrectly predicted non-carbohydrate binding

residues
Recall/Sensitivity/True

Positive Rate (TPR) +
TP

TP FN

Specificity/True Negative
Rate (TNR) +

TN
TN FP

Fall-out Rate (FOR)/False
Positive Rate (FPR) +

FP
FP TN

Miss Rate (MR)/False
Negative Rate (FNR) +

FN
FN TP

Accuracy (ACC) +
+ + +

TP TN
FP TP TN FN

Balanced Accuracy
(BACC)

++ +( )TP
TP FN

TN
TN FP

1
2

Precision (Prec.)
+

TP
TP FP

F1 score (Harmonic mean
of precision and
recall)

+ +
TP

TP FP FN
2

2

Mathews Correlation
Coefficient (MCC)

× ×
+ × + × + × +

TP TN FP FN
TP FN TP FP TN FP TN FN

( ) ( )
( ) ( ) ( ) ( )
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has recently been successfully applied to solve some interesting bioin-
formatics problems [21,26,61–63] is utilized in this work to develop the
StackCBPred predictor for carbohydrate-binding sites prediction.
Stacking is an ensemble approach, which obtains the information from
multiple models and aggregates them to form a new model. In stacking,
the information gained from more than one predictive model minimizes
the generalization error rate and yields more accurate results.

The stacking framework includes two-stages of learners. The clas-
sifiers of the first-stage are called base-classifiers. More than one base-
classifiers are employed in the first stage. Likewise, the classifiers of the
second-stage are called meta-classifiers. Using meta-classifier, the pre-
diction probabilities from the base-classifiers are combined to reduce
the generalization error. To supply the meta-classifier with significant
information on the problem space, the classifiers that are different from
one another based on their underlying operating principle are used as
the base-classifiers.

To find the base-classifiers and meta-classifiers to use in the first and
second-stage of stacking framework, we examined eight different ma-
chine learning algorithms: (a) Support Vector Machines (SVM) [64], (b)
Gradient Boosting Classifier (GBC) [65], (c) Bagging Classifier (BAG)
[66], (d) Extra Tree Classifier (ETC) [67], (e) Random Decision Forest
(RDF) [68], (f) K-Nearest Neighbor (KNN) [69], (g) Logistic Regression
(LOGREG) [59,70] and (h) XGBoost (XGB) [71].

Algorithms mentioned above are built and optimized using Scikit-
learn [72]. To select the algorithms to be used as the base-classifiers for
the stacked model, we evaluate four different combinations of base-
classifier which are:

1. Model-1: includes SVM, LOGREG, KNN, and ETC.
2. Model-2: includes SVM, LOGREG, KNN, and RDF.
3. Model-3: includes SVM, LOGREG, KNN, and BAG.
4. Model-4: includes GBC, LOGREG, and KNN.

Model-1, Model-2, and Model-3 are constructed to include classi-
fiers that are different from each other based on the underlying prin-
ciples of learning. Here, the tree-based classifiers ETC, RDF and BAG are
individually combined with the other three classifiers, SVM, LOGREG
and KNN to learn different information from the problem-space. On the
other hand, Model-4 is formed by the pair-wise correlation analysis of
the residue-wise probabilities given by the individual classifiers. Three
of the classifiers, with the least Pearson correlation coefficient, are se-
lected as base-classifiers. For all the above combinations, SVM is used as
a meta-classifier. The 10-fold CVs of the above four combinations in-
dicate that the Model-1, when combined with SVM gives the best per-
formance. Therefore, we employ four classifiers SVM, LOGREG, KNN
and ETC as base classifiers and SVM as meta-classifier in the
StackCBPred framework. In StackCBPred, the binding and non-binding
probabilities generated by the four base-classifiers are combined with
original 33 features which include PSSM, MG, ASA, Physiochemical
properties, Phi & Psi angles, and HSE up & HSE down and are given as
input features to the meta-classifier which eventually predict binding
and non-binding residues. Fig. 1 illustrates the prediction framework of
StackCBPred.

In order to find the base-classifiers to use in the first stage and the
meta-classifier to use in the second-stage of stacking framework, we
explored eight different machine learning algorithms and they are:

i) SVM: We employed SVM [64] with the radial basis function (RBF)
kernel as one of the classifiers to be used in the stacking frame-
work. SVM classifies by maximizing the separating hyperplane
between two classes and penalizes the instances on the wrong side
of the decision boundary. The performance of SVM with the RBF
kernel relies on two parameters C, and γ. The RBF kernel para-
meter γ and the cost parameter C are optimized to achieve the best
10-fold CV balanced accuracy using a grid search [73] technique.
The optimal values of the parameters of the SVM were found to be

C = 21.24 and γ = 2−8.75.
ii) LOGREG: We implemented LOGREG [59,70] with L2 regulariza-

tion as another classifier to be used in the staking framework. It
measures the relationship between the dependent categorical
variable (in our case: a carbohydrate-binding or non-carbohy-
drate-binding) and one or more independent variables by gen-
erating an estimation probability using logistic regression. The
parameter, C which controls the regularization strength is opti-
mized to achieve the best 10-fold CV balanced accuracy using grid
search [73]. In our implementation, the optimal value of the
parameter, C was found to be 2.3784.

iii) ETC: We employed an extremely randomized tree or ETC [67] as
another classifier to be used in stacking framework. ETC fits

Fig. 1. Illustration of the framework of the final predictor, StackCBPred, which
is principally the Model-1 with another version of SVM in the meta layer.
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several randomized decision trees from the data sample and uses
averaging to improve the prediction accuracy and control over-
fitting. We constructed the ETC model with 1000 trees and the
quality of a split was assessed by the Gini impurity index.

iv) RDF: RDF [68] constructs a multitude of decision trees on various
sub-samples of the dataset and outputs the mean prediction of the
decision trees to improve the predictive accuracy and control over-
fitting. In our implementation of the RDF, we used bootstrap
samples to construct 1000 trees in the forest.

v) KNN: KNN [69] operates by learning from the K number of
training samples closest in distance to the target point in the fea-
ture space. The classification decision is computed from the ma-
jority votes coming from the neighbors. In this work, the value of K
was set to 9 and all the neighbors were weighted uniformly.

vi) LibD3C: LibD3C [74] is based on k-means clustering and a dy-
namic selection strategy. It uses various subset classifiers to select
a final set of ensemble classifiers to compute the decision and
make the appropriate prediction.

vii) BAG: BAG [66]method forms a class of algorithms that builds
several instances of a base classifier/estimator on random subsets
of the training samples and subsequently aggregates their in-
dividual predictions to yield a final prediction. It is useful for re-
ducing variance in the prediction. In our study, BAG classifier was
fit on multiple subsets of data with the repetitions using 1000
decision trees, and the outputs were combined by weighted
averaging.

viii) GBC: GBC [65] involves three elements: (a) a loss function to be
optimized, (b) a weak learner to make predictions and (c) an ad-
ditive model to add weak learners to minimize the loss function.
The objective of GBC is to minimize the loss of the model by
adding weak learners in a stage-wise fashion using a procedure
similar to gradient descent. The existing weak learners in the
model are remained unchanged while adding new weak learners.
The output from the new learner is added to the output of the
existing sequence of learners in an effort to correct or improve the
final output of the model. Here, we used 1000 bosting stages
where a regression tree was fit on the negative gradient of the
deviance loss function. The learning rate and the maximum depth
of each regression tree were set to 0.1 and 3, respectively.

ix) XGB: As GBC, XGB [71] also follows the principle of gradient
boosting. However, XGB uses a more regularized model formaliza-
tion to control over-fitting, which results in better performance. In
addition to better performance, XGB is designed to provide higher
computational speed. In our implementation of the XGB, we used
100 bosting stages with a soft prob learning objective, where the
number of classes was set to 2 as we are dealing with a binary
classification problem of carbohydrate-binding and non-carbohy-
drate-binding residues. The values of the additional parameters:
learning rate, maximum depth, minimum child weight, and sub-
sample ratio were set to 0.1, 3, 5 and 0.9, respectively.

3. Results

In this section, we first demonstrate the results of the feature se-
lection and optimal window selection. Then, we present the perfor-
mance comparison of potential base-classifiers and stacked models.
Finally, we report the performance of StackCBPred on the benchmark
dataset and the independent test datasets and subsequently compare it
with the existing method. We would like to emphasize that balanced
datasets are utilized for training, cross-validation, and independent test
unless otherwise indicated.

3.1. Feature selection

To identify the features that support the performance of the classi-
fier, we applied various feature selection methods such as incremental

feature selection (IFS), mRMR, and MRMD. mRMR (minimum
Redundancy Maximum Relevance) [75] uses the F-statistic and corre-
lation to calculate redundancy & relevance and select the best combi-
nation of features. MRMD [76] decides on the basis of Pearson's cor-
relation coefficient to measure relevance and Euclidean distance (ED),
Cosine distance (CD) and Tanimoto (TO) to calculate redundancy. IFS
begins with the empty feature set and a feature group is added to the
feature set if the addition of the feature group improves the perfor-
mance of the predictor. In case, the accuracy of the predictor is reduced
by adding the new feature group, this feature group is discarded, and a
new feature group is tested in an iterative fashion. To obtain the best
features through IFS we used the GBC predictor on benchmark dataset
to train and TS49 dataset to test. Table 2 shows the comparison be-
tween the results obtained by SVM through 10-fold CV on the bench-
mark dataset while using different feature selection methods. From
Table 2., it is evident that IFS provides the best results for all the per-
formance metrics, except for sensitivity. The MRMD approach yields
the highest sensitivity, however, shows poor results for other perfor-
mance metrics. Therefore, we selected IFS as a feature selection method
in this work. We initially collected thirty-nine features (see Section 2.2),
of which, we discarded six features based on IFS. The three secondary
structure features and three MoRFs features were removed as these
features did not help improve the performance of the predictor.

3.2. Window selection

The optimal size of the sliding window (W) was searched to de-
termine the number of residues around a target residue, which can
moderate the interaction between protein and carbohydrate. We de-
signed 8 different models of every machine learning classifiers with 8
different window sizes (1, 3, 5, 7, 9, 11, 13 and 15). Window size for
which the classifier yields the highest 10-fold CV balanced accuracy on
benchmark dataset was selected as the optimal window size for that
classifier. We found that the optimal window size for different classi-
fiers is different. For example, the optimal window size for the SVM was
found to be 5 (see Fig. 2) whereas, for the KNN it was 1. In this study,
the optimal window size for every classifier was separately identified to
design an accurate and effective predictor.

3.3. Selection of the base and meta-classifiers

To select the methods for base and meta-classifiers, we examined
the performance of eight different machine learning methods, BAG,
ETC, LOGREG, KNN, RDF, GBC, XGB and SVM on the benchmark da-
taset using 10-fold CV. The performance comparison of the classifiers is
shown in Table 3.

Table 3 shows that the optimized SVM with RBF-kernel provides the
highest performance in terms of specificity, fall out rate, balanced ac-
curacy, accuracy, precision, and MCC, among all the classifiers ex-
amined in this application. Moreover, the sensitivity and miss rate is
highest for the XGB and F1 score is highest for RDF. Similarly, it is

Table 2
Performance comparison of SVM models obtained using features selected
through various feature selection techniques with optimal sliding window size
on benchmark dataset through a 10-fold CV.

Metric/Method mRMR MRMD IFS

Sensitivity 0.734 0.760 0.737
Specificity 0.750 0.723 0.762
Bal. Accuracy 0.742 0.742 0.750
Accuracy 0.742 0.742 0.750
Precision 0.746 0.733 0.756
F1 score 0.740 0.746 0.746
MCC 0.485 0.484 0.499

Best scores are boldfaced
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evident that the performance of tree-based ensemble methods, BAG,
ETC, RDF, GBC, and XGB are close to SVM.

The balanced accuracy of these tree-based methods differs from
each other and SVM only by about 1–4%. However, the balanced ac-
curacies of LOGREG and KNN are 7.31% and 22.79% lower than the
SVM, respectively. Moreover, the learning principles of LOGREG, KNN,
and SVM are different from each other.

Following the guidelines of base-classifier selection based on dif-
ferent underlying principles, we initially selected SVM, LOGREG, and
KNN as three of the base classifiers. Then, we added one tree-based
ensemble method out of five methods, BAG, ETC, RDF, GBC, and XGB,
at a time as the fourth base-classifier and formulated five different
combinations. For all the combinations, the meta-classifier is SVM. Out
of five combinations, we present the performance of the top three
combinations namely Model-1, Model-2, and Model-3 in Table 5.

Moreover, we created an additional stacked model following the
guidelines of base-classifier selection based on the low Pearson corre-
lation coefficient. We computed the Pearson correlation coefficient (ρ)
between the two sets of probabilities given by two classifiers using
equation (1).

= XY
X Y2 2 (1)

The principle of stacking states that it is preferable to use learners

that are thinly correlated in the first-stage to obtain better performance
at the second-stage [21]. To select thinly correlated methods, we per-
formed a pair-wise correlation analysis of the residue-wise probabilities
between the classifiers. To obtain residue-wise probabilities, the clas-
sifiers were trained on a benchmark dataset and the probabilities for
each residue in the TS49 test set were obtained through an independent
test. The results of these correlations are shown in Table 4.

Since the SVM was found to be the top-performing method from the
above comparison between different classifiers, it was selected as a
meta-classifier to create the fourth combination (i.e., Model-4). Next,

Fig. 2. Performance comparison of SVM based models created from different sliding window sizes. The sensitivity, specificity and balanced accuracy are reported.
The optimal size of the window and the corresponding performance scores are marked by a black rectangle. The optimal window size was selected based on the
highest 10-fold CV balanced accuracy.

Table 3
Comparisons of various machine learning algorithms on the benchmark dataset using 10-fold CV.

Metric/Method BAG ETC LOGREG LibD3C KNN RDF GBC XGB SVM

Sens. 0.743 0.743 0.718 0.668 0.636 0.751 0.733 0.763 0.737
Spec. 0.728 0.744 0.679 0.625 0.585 0.745 0.715 0.706 0.762
FOR 0.272 0.256 0.321 0.374 0.415 0.255 0.285 0.294 0.238
MR 0.247 0.257 0.282 0.331 0.364 0.249 0.268 0.237 0.263
BACC 0.740 0.744 0.698 0.646 0.610 0.748 0.724 0.734 0.750
ACC 0.740 0.744 0.698 0.646 0.610 0.748 0.724 0.734 0.750
Prec. 0.734 0.744 0.691 0.640 0.605 0.747 0.720 0.722 0.756
F1 0.744 0.744 0.704 0.654 0.620 0.749 0.726 0.742 0.746
MCC 0.481 0.487 0.397 0.294 0.221 0.496 0.448 0.470 0.499

Best score values are boldfaced.

Table 4
Pair-wise correlation analysis of the probability distribution given by the base-
classifiers on TS49.

Classifiers ETC GBC KNN LOG REG RDF BAG SVM XGB

ETC – 0.918 0.881 0.946 0.997 0.989 0.875 0.868
GBC – – 0.762 0.922 0.924 0.936 0.782 0.727
KNN – – – 0.816 0.879 0.861 0.831 0.804
LOG REG – – – – 0.951 0.953 0.824 0.774
RDF – – – – – 0.994 0.875 0.878
BAG – – – – – – 0.863 0.855
SVM – – – – – – – 0.809

Identified least pair-wise correlation scores are boldfaced.

S. Gattani, et al. Carbohydrate Research 486 (2019) 107857

6



the method which is least correlated with SVM was identified. From
Table 4, we can see that the SVM is least correlated with the GBC with a
correlation coefficient of 0.782. Thus, GBC was selected as the first
base-classifier. Consequently, the next method which is least correlated
with GBC was identified. Again, from Table 4, we found that GBC is
least correlated with XGB. However, as both XGB and GBC are based on
boosting principle, instead of selecting XGB, next least correlated
method was identified. The next least correlated method to GBC was
found to be KNN with a correlation coefficient of 0.762. Thus, the KNN
was selected as the second base-classifier. Successively, the least cor-
related method to KNN was identified. Table 4 shows that the least
correlated method to KNN excluding GBC and XGB is LOGREG with a
correlation coefficient of 0.816. The GBC and XGB were excluded be-
cause GBC was already selected as one of the base-classifier and XGB
follows the same principle of boosting as GBC.

Finally, with the above approach GBC, KNN and LOGREG were
selected as base-classifiers to create Model-4. The performance of
Model-4 and its comparison with other models is shown in Table 5.

Table 5 shows that the Model-1, which includes SVM, LOGREG,
KNN, and ETC as base-classifier and another version of SVM as meta-
classifier, provides the highest performance. Thus, we select Model-1 as
our final stacking model.

3.4. Performance comparison on benchmark dataset

Here, we compute the performance of StackCBPred using a 10-fold
CV on the benchmark dataset. While performing 10-fold CV the training
of the StackCBPred was done using a balanced number of samples
whereas, the testing was performed using a balanced as well as an
imbalanced number of samples, respectively. Testing using the im-
balanced number of samples in 10-fold CV was performed so that the
results could be directly compared to SPRINT-CBH. Table 6 shows the
performance comparison of StackCBPred and SPRINTCBH. The quan-
tities for all the evaluation metrics for SPRINT-CBH are obtained from
Taherzadeh et al. [6].

From Table 6, we observed that the performance of SPRINT-CBH is
biased more towards the negative class (non-carbohydrate binding)
because of which the specificity (98.9%) is extremely high and the
sensitivity (18%) is extremely low. When the test data is highly im-
balanced, it is easy to achieve high overall accuracy (ACC) simply by
predicting every test data point as the majority class, which is what we
can see from the result of SPRINT-CBH in Table 6. Balanced accuracy,

which avoids inflated performance estimates on imbalanced datasets
would be a proper measure of accuracy.

However, the balanced accuracy of SPRINT-CBH was not reported
in the literature. We computed the balanced accuracy of SPRINT-CBH
by utilizing the expression of balanced accuracy provided in Table 1.
Moreover, the main goal of the carbohydrate-binding site prediction is
to predict the binding sites accurately. However, due to the low sensi-
tivity of 18%, the SPRINT-CBH bears the risk of not identifying the
binding sites accurately. On the other hand, StackCBPred can predict
the binding sites more accurately than the SPRINT-CBH based on the
sensitivity and balanced accuracy scores as shown in Table 6. The
sensitivity of the StackCBPred is 66.5% and 86.1% for the imbalanced
and balanced number of samples used in testing through a 10-fold CV.
Additionally, the balanced accuracy of the StackCBPred is 66.5% and
86% for the imbalanced and balanced number of samples used in
testing through a 10-fold CV.

The StackCBPred attains 13.68% improvement in balanced accuracy
over SPRINT-CBH while, tested using an imbalanced test set. These
results indicate that StackCBPred can predict the binding sites more
accurately compared to the SPRINT-CBH.

3.5. Performance comparison using independent test datasets

In this section, we further examine the performance of StackCBPred
by performing an independent test on two independent test datasets,
TS49 and TS88. The TS49 dataset was recently constructed by
Taherzadeh et al. [6] to test the performance of the carbohydrate-
binding site predictor, called SPRINT-CBH. However, the TS88 dataset
was collected in this study to further test the robustness of StackCBPred.
To test using TS49 and TS88, StackCBPred was first trained on a ba-
lanced benchmark dataset and simultaneously tested on both the in-
dependent test datasets. Table 7 lists the predictive results of
StackCBPred and SPRINT-CBH on the TS49 test set.

Table 7 indicates that the StackCBPred outperforms SPRINT-CBH by
42.16% and 80.72% based on sensitivity while, tested on the im-
balanced and balanced TS49 test set, respectively. Similarly,
StackCBPred attains 2.59% and 22.53% improvement in balanced ac-
curacy over SPRINT-CBH while, tested using an imbalanced and ba-
lanced TS49 test set, respectively. It is to be noted that the main goal
here is to predict carbohydrate-binding sites thus, higher sensitivity is
preferable.

The results in Table 7 also indicate that the sensitivity of
StackCBPred improves from 55.3% to 70.3% and the balanced accuracy
improves from 67.4% to 80.5% while, the number of carbohydrate-
binding and non-binding residues are balanced in the TS49 test set. The
improved sensitivity of carbohydrate-binding sites prediction by
StackCBPred on TS49 test set also indicates that StackCBPred predicts
binding sites more accurately compared to the SPRINT-CBH predictor.
Furthermore, the balanced accuracy measure indicates that the
StackCBPred is not biased more towards the majority class rather it
provides a balanced performance compared to SPRINT-CBH method.

Additionally, the performance of StackCBPred and SPRINT-CBH was
further evaluated on the TS88 test set and their prediction results are
listed in Table 8. Table 8 shows that the sensitivity of StackCBPred is
334.62% better than SPRINT-CBH. Besides, the miss rate of SPRINT-
CBH is 0.870, which is very close to 1. Therefore, the specificity of the

Table 5
Comparisons of stacked models with a different set of base classifiers on
benchmark dataset through a 10-fold CV.

Metric/Method Model-1 Model-2 Model-3 Model-4

Sensitivity 0.861 0.855 0.857 0.859
Specificity 0.859 0.859 0.859 0.859
Fall Out Rate 0.141 0.141 0.141 0.141
Miss Rate 0.139 0.145 0.143 0.141
Bal. Accuracy 0.860 0.857 0.858 0.859
Accuracy 0.860 0.857 0.858 0.859
Precision 0.859 0.858 0.859 0.859
F1 score 0.860 0.857 0.858 0.859
MCC 0.720 0.714 0.716 0.718

Best score values are boldfaced.

Table 6
Comparisons of StackCBPred with SPRINT-CBH on the benchmark dataset.

Methods Sens. Spec. BACC ACC MCC

SPRINT-CBH Imbalanced 0.180 0.989 0.585 0.950 0.250
StackCBPred Imbalanced 0.665 0.664 0.665 0.664 0.134

Balanced 0.861 0.859 0.860 0.860 0.720

Table 7
Comparisons of StackCBPred with SPRINT-CBH on a balanced and imbalanced
independent test dataset, TS49.

Methods Sens. Spec. BACC ACC MCC

SPRINT-CBH Imbalanced 0.389 0.925 0.657 0.906 0.195
StackCBPred Imbalanced 0.553 0.795 0.674 0.786 0.159

Balanced 0.703 0.907 0.805 0.805 0.623
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SPRINT-CBH is very high i.e., it most of the time predicts the sample
point as the majority class (non-carbohydrate-binding) which results in
low sensitivity. Additionally, the balanced accuracy of the SPRINT-CBH
is 20.74% lower compared to StackCBPred. Thus, these results indicate
that StackCBPred predicts a greater number of carbohydrate-binding
and non-binding residues correctly and therefore is also a balanced
predictor of carbohydrate-binding sites.

Moreover, Fig. 3 presents the ROC curves generated by StackCBPred
and SPRINTCBH, while the predictions are evaluated on the imbalanced
TS88 test set. The ROC curves show the TPR (sensitivity)/FPR (1-spe-
cificity) pairs at different classification thresholds. It is evident from the
ROC curves that the StackCBPred provides higher TPR compared to
SPRINT-CBH at different classification thresholds. Moreover, the AUC
score given by StackCBPred is about 1.18% higher than that of SPRINT-
CBH.

4. Discussions

In this section, we have first explained the statistical significance
test performed on the TS88 independent test set and further we de-
monstrate the details of using the StackCBPred Software.

4.1. Statistical significance test

We performed McNemar's test on the TS88 independent test set to
provide the statistical significance of our results. We could only perform
statistical significance on TS88 test set as the prediction results from
SPRINT-CBH web-server on TS49 test set do not match the results
mentioned in the paper. The differences in the accuracies that are ob-
tained from SPRINT-CBH web-server and the paper could be an out-
come of using TS49 test set for training the SPRINT-CBH web-server
model. At first, we set our null and alternative hypotheses. For the null
hypothesis, we assume that there is no difference between StackCBPred

and SPRINT-CBH predictors whereas, for the alternate hypothesis, we
assume that there is a significant difference between StackCBPred and
SPRINT-CBH predictors. Then, we prepare two different contingency
tables and conduct McNemar's test separately. Finally, depending upon
the p-value obtained from the McNemar's test, we either accept or reject
our null hypothesis. The detailed approach is shown below:

• Null Hypothesis: There is no difference between StackCBPred and
SPRINT-CBH predictors.

• Alternate Hypothesis: There is a significant difference between
StackCBPred and SPRINTCBH predictors.

Construction of two different contingency tables:
To perform McNemar's test, we set alpha value of 0.05 as the cutoff

for significance test and run McNemar's test on both the contingency
tables are shown in Table 9 and Table 10. The McNemar's test for two
different contingency tables above resulted in a p-value of < 0.01
which, is less than 0.05. Therefore, we reject the null hypothesis and
accept the alternative hypothesis that there is a significant difference
between StackCBPred and SPRINT-CBH.

4.2. StackCBPred online server

StackCBPred is available as an online server at http://bmll.cs.uno.
edu/add. The details of using StackCBPred are as follows: StackCBPred
accepts input as a single protein sequence and generates an output that
contains the predicted annotation for every residue in the input se-
quence as 1/0 (1 indicates binding and 0 indicate non-binding) fol-
lowed by nonbinding probability and binding probability. A screenshot
of the top page of StackCBPred online server with example sequence is
shown in Fig. 4. To use StackCBPred, users need to provide a job title,
protein sequence, and passkey before submitting a job to StackCBPred
server. An example job title and protein sequence are also provided for

Table 8
Comparisons of StackCBPred with SPRINT-CBH on the imbalanced independent
test dataset, TS88.

Methods Sens. Spec. FOR MR BACC MCC

SPRINT-CBH 0.130 0.997 0.003 0.870 0.564 0.257
StackCBPred 0.565 0.797 0.203 0.435 0.681 0.139

Fig. 3. Comparison of ROC and AUC scores given by StackCBPred and SPRINT-CBH on the imbalanced independent test dataset, TS88.

Table 9
Here, the contingency table is formed by comparing the predicted results of
StackCBPred and SPRINT-CBH with actual class labels.

StackCBPred SPRINT-CBH =Actual Class Label ≠ Actual Class Label

=Actual Class Label 21191 5057
≠ Actual Class Label 273 620
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the users which are populated in the respective text boxes by clicking
on the “Example” menu. The passkey is optional and is used to make the
output of the job either private or public. By default, the outputs of the
jobs submitted to StackCBPred are public, but the users can make the
job private by entering the passkey before submitting a job to
StackCBPred server. The screenshot of the output of the StackCBPred
online server is shown in Fig. 5.

5. Conclusions

In this work, we have developed a Stacking-based machine learning
predictor, named StackCBPred, for the prediction of protein-carbohy-
drate binding sites directly from the protein sequence. We collected a
benchmark dataset and two independent test datasets of high-resolution
carbohydrate-binding proteins to train, validate and independently test
StackCBPred. Several important evolution-derived, sequence-based and
structural features were extracted and chosen in an incremental fashion
to find the trained best performing model. In addition, an advanced
machine learning technique called stacking was implemented to ensure
robust performance. We used incrementally chosen features to train the
ensemble of predictors at the first-stage (i.e., base-layer). Then, we
combined the output from the base-learners with the original features
and used it as an input to the predictor at second-stage (i.e., meta-
layer). Eventually, the meta-layer predictor of the StackCBPred
achieves a 10-fold CV balanced accuracy and sensitivity of 86.00% and
86.09% respectively, on a balanced benchmark dataset. For the ba-
lanced independent test dataset, TS49, StackCBPred attains a balanced
accuracy and sensitivity of 80.51% and 70.28%, respectively.

Furthermore, for the new imbalanced independent test dataset TS88
introduced in this work, StackCBPred attains a balanced accuracy and
sensitivity of 68.46% and 56.39%, respectively. These results allow us
to conclude that the stacking technique helps improve the accuracy
significantly by reducing the generalization error. Moreover, com-
parative results highlight that the proposed method, StackCBPred,
outperforms the existing method based on both benchmark and in-
dependent test datasets. These outcomes help us surmise that the
StackCBPred can be effectively used for the rapid annotation of car-
bohydrate-binding sites directly from the sequence and can provide
insight in treating critical diseases.

Data availability

The data of this research and software code oof the tool can be
found here: http://cs.uno.edu/~tamjid/Software/StackCBPred/code_
data.zip.
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Table 10
Here, the contingency table is formed by comparing the predicted results of StackCBPred and SPRINT-CBH with each other.

StackCBPred SPRINT-CBH Carbohydrate-Binding Non-Carbohydrate-Binding

Carbohydrate-Binding 485 48 533 (1.96%)
Non-Carbohydrate-Binding 5282 21326 26608 (98.03%)

5767 (21.24%) 21374 (78.7%) 27141

Fig. 4. Screenshot shows the top page of the StackCBPred online server with an
example sequence. Fig. 5. Screenshot shows the output page of the StackCBPred online server for

an example sequence.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.carres.2019.107857.
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