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5Abstract

6Supersecondary structure (SSS) refers to specific geometric arrangements of several secondary structure
7(SS) elements that are connected by loops. The SSS can provide useful information about the spatial
8structure and function of a protein. As such, the SSS is a bridge between the secondary structure and
9tertiary structure. In this chapter, we propose a stacking-based machine learning method for the prediction
10of two types of SSSs, namely, β-hairpins and β-α-β, from the protein sequence based on comprehensive
11feature encoding. To encode protein residues, we utilize key features such as solvent accessibility, conserva-
12tion profile, half surface exposure, torsion angle fluctuation, disorder probabilities, and more. The useful-
13ness of the proposed approach is assessed using a widely used threefold cross-validation technique. The
14obtained empirical shows that the proposed approach is useful and prediction can be improved further.

15Key words Supersecondary structure prediction, Beta-hairpins, Beta-alpha-beta, Stacking, Machine
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181 Introduction

19A protein macromolecule is a linear chain of amino acid residues
20linked together by peptide bond. Protein structure can be
21described in terms of four different hierarchies of structural and
22folding patterns-based complexities: primary structure is the
23sequence of amino acid chain only that makes up a polypeptide
24chain without any structural information; secondary structure con-
25cerns regular, repeated local three-dimensional (3D) segments of
26proteins including α-helix and β-strand; tertiary structure is the
27global 3D structure of a protein molecule; and quaternary structure
28describes the way in which the different tertiary subunits are packed
29together to form the structure of a protein complex [1]. The super-
30secondary structures bridge the secondary structure and the tertiary
31structure of a protein. Secondary structure elements connected by a
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32polypeptide (loop) in specific geometric arrangements are called
33motifs or supersecondary structures [2]. These supersecondary
34structures (SSSs) can provide information about the spatial struc-
35ture of a protein. Some of the most commonly occurring SSSs
36include α-helix hairpins, β-hairpins, β-α-β, coiled coils, Greek key,
37α-loop-α, α-turn-α, and Rossmann motifs. Accurate knowledge of
383D structure of a protein provides insight on a protein’s function,
39which is crucial in effective design and development of drug.
40The classic work of Anfinsen, in the 1950s, on the enzyme
41ribonuclease revealed the relation between the amino acid sequence
42of a protein and its conformation. Through his experiments, Anfin-
43sen showed that the information needed for a protein to obtain its
443D structure is contained in its amino acid sequence. Nevertheless,
45prediction of 3D structure of protein from sequence remains as one
46of the greatest challenge for the scientific community [3, 4]. Inves-
47tigators are exploring two fundamentally different approaches of
48predicting the 3D structure from amino acid sequence. The first is
49ab initio or de novo protein structure prediction (aiPSP), which
50attempts to build the structure from the sequence of amino acid
51residues without prior knowledge about similar sequences in
52known protein structure database [5–12]. Computational methods
53are employed that attempt to minimize the free energy of a struc-
54ture with a given sequence or to simulate the folding process.
55Molecular dynamics (MD) is an example of ab initio method that
56performs simulation of the protein folding process. MD has been
57successfully applied for the prediction of small proteins and pep-
58tides as well as for the refinement of the structures (both small and
59large proteins) by minimizing the energy, to some extent
60[13, 14]. The second approach is dependent on the availability of
61similar templates in the protein database and is commonly known as
62homology modelling [15–19]. Amino acid sequence of a known
63structure or fragments is scanned for sequence similarity with the
64sequence of the target protein with unknown structures, and if a
65significant match is detected, the known structural knowledge is
66applied to construct the final model. Moreover, the prediction of
67tertiary structure of a protein can also be achieved by proceeding in
68a hierarchal fashion. First, the secondary structure of the protein is
69predicted from the amino acid sequence, then the supersecondary
70structures are derived from the secondary structure elements, and
71finally the information about the secondary and SSSs is used to
72computationally determine the 3D shape of the protein molecule
73[19–24].
74The past decade has witnessed tremendous progress in the
75development of accurate predictors of secondary structure. Some
76of the recent and successful predictors of secondary structures
77include SSpro [25], Spider 3 [26], Spider 2 [27], and SPINE X
78[28]. As reported, SSpro achieved highest accuracy of 92.9% for
79secondary structure prediction by combining sequence similarity
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80and sequence-based structural similarity. In addition to being useful
81for the prediction of the tertiary structure, the secondary structure
82predicted from the sequence is widely applied for the analysis and
83prediction of numerous structural and functional properties of
84proteins. These properties include prediction of RNA-binding pro-
85teins [29], DNA-binding protein and their binding sites [30],
86protein-peptide interactions [31], protein-carbohydrate interaction
87[32], residue contacts [8, 33], disorder region [34, 35], accessible
88surface of amino acids [36], target selection for structural genomics
89[37, 38], and more.
90In the past, many attempts have been made in predicting
91individual SSSs types, and several effective computational predic-
92tion methods have been proposed in literature for analyzing them,
93such as β hairpins [39, 40], β-α-β [2, 41], coiled coils [42, 43], and
94helix-turn-helix motifs [44–46]. Many of the SSS prediction meth-
95ods capitalize on the fact that the prediction of secondary structure
96provides useful information for the prediction of SSS [2, 47]. Pre-
97dicted SSSs are useful features for various applications, such as
98simulation of protein folding [48], analysis of relation between
99coiled coils and disorder regions [49], study and identification of
100many functional and active sites [2], analysis of amyloids [50],
101genome-wide studies of protein structure [51, 52], and prediction
102of protein domains [53].
103In this chapter, we present a machine learning (ML) approach
104for the prediction of SSSs directly from the sequence of amino acids
105instead of following the traditional hierarchical approach of first
106predicting the secondary structures and then utilizing the predicted
107SS types (labels) to predict the SSSs. We implement several ML
108methods along with a recently studied [31, 54] stacking-based ML
109predictor for two different types of supersecondary structures
110β-hairpins and β-α-β. The stacking-based ML approach combines
111the information of several different ML algorithms to generate a
112new prediction model. It provides a scheme for minimizing the
113generalization error rate of one or more predictive models. The
114utility of the proposed approach is fast assessed by threefold cross-
115validation approach. The results obtained from extensive examina-
116tion shows that the proposed approach is time-consuming, yet very
117promising. Along with detailed methodology and explanation of
118required tools, techniques, and resources, we provide useful notes
119to assist readers with the process of improving the prediction accu-
120racy of the proposed method.

1212 Materials

122In this section, we describe the procedure for benchmark dataset
123preparation, tools necessary for class label assignment, aggregation
124and encoding of input features, machine learning algorithms, and
125the criteria to evaluate them.
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2.1 Dataset 126We built up a benchmark dataset [55] of protein sequences col-
127lected from the protein data bank [56] using an Advanced Search
128interface with the following specifications: (1) experimental
129method, X-ray; (2) molecule type, protein; (3) X-ray resolution,
130< 1.5 Å; (4) chain length,� 40; and (5) sequence identity (cutoff),
13130%. This resulted in 3474 proteins. The chains of these proteins
132were split into separate structures, and the sequence from these
133single-chain structures were extracted resulting in 5388 different
134sequences. To reduce bias from too many similar sequences, BLAS-
135TCLUST [57] was used to reduce sequence similarity to 25%.
136Keeping just the first of each cluster reduced the number of
137sequences to 3349.
138Furthermore, we discarded the protein sequences with
139unknown amino acid, labelled with “X” character, because of the
140unavailability of the corresponding features. Structures with
141unknown coordinates of amino acids were removed as well, because
142the corresponding supersecondary structure of the amino acids
143could not be obtained. Moreover, to train the ML algorithms,
144several tools were used to generate features from sequence (see
145Subheading 2.3). For some of the sequences, these tools failed to
146generate useful information. Such sequences were discarded from
147further consideration. We also discarded sequences where we found
148that the length of a sequence given by the tool’s output and the
149length of a FASTA sequence provided by the collected PDB files
150differed. Finally, this reduced the number of sequences to 3203.
151In addition, if none of the amino acid residues in a protein
152sequence were labelled as either β-hairpin or β-α-β, such sequences
153were discarded from their respective benchmark dataset. As a result,
154the β-hairpin dataset contains 2520 proteins, and the β-α-β dataset
155contains 1208 proteins.
156

2.2 Assignment of

Supersecondary

Structures

157The SSS is composed of two secondary structure units connected
158by a polypeptide (loop) with a specific arrangement of geometry.
159Among more than a dozen types of the SSSs, the β-hairpins, coiled
160coils, α-turn-α, and β-α-βmotifs received more attention due to the
161fact that they are present in a large number of protein structures and
162play an important role in many biological activities. In this study, we
163focus on the study of β-hairpins and β-α-β motifs. The second
164largest group of protein domains is the β-hairpins. They are found
165in diverse protein families, including enzymes, transporter proteins,
166antibodies, and viral coats [47]. The β-hairpin motif consists of two
167strands that are adjacent in primary structure, oriented in an anti-
168parallel direction, and linked by a short loop of two to five amino
169acids. On the other hand, β-α-β is a complex supersecondary struc-
170ture in proteins and often appears in Bacillus subtilis proteases
171[58]. The study of β-α-β motifs is important because many func-
172tional as well as active sites often occur in the polypeptide of β-α-β
173motifs, including ADP-binding sites, FAD-binding sites,
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174NAD-binding sites, and more [59]. In this work, we used the
175PROMOTIF [60] program to generate annotations (labels) for
176two types of supersecondary structures β-hairpin and β-α-β predic-
177tors. PROMOTIF is a program like DSSP [61] as it uses the
178distances and hydrogen bonding between residues to assign super-
179secondary structures. The single-chain protein structures are passed
180to the PROMOTIF program to obtain the information about the
181residues which belong to β-hairpin or β-α-β motifs. Based on the
182outcome of the PROMOTIF program, if the residue belongs to the
183β-hairpin or β-α-β motif, the residue is labelled as “1” else “0,”
184respectively.
185

2.3 Feature

Extraction

186Feature extraction and encoding is an important step in the devel-
187opment of machine learning-based predictors. To create an effec-
188tive machine learning-based method to predict β-hairpin and β-α-β
189motifs from sequence alone, we use various sequence and structure-
190based features. These features provide information about the chem-
191ical, structural, and flexibility profiles of the proteins. A set of
192features used in this study are listed in Table 1 and are briefly
193discussed below.

1941. Amino acid (AA): Twenty different standard amino acids were
195encoded using 20 different integers ranging from 1 to

t:1Table 1
List of features used in SSS prediction

Feature category Features count t:2

Amino acid (AA) 1 t:3

Physiochemical properties (PP) 7 t:4

Position-specific scoring matrix 20 t:5

Secondary structure probabilities 6 t:6

Accessible surface area 1 t:7

Torsion angle (φ, ψ) fluctuation 2 t:8

Monogram 1 t:9

Bigram 20 t:10

Position-specific estimated energy 1 t:11

Terminal indicator (TI) 1 t:12

Disorder probability 1 t:13

Phi and psi torsion angles 2 t:14

Half sphere exposures 2 t:15

Total 65 t:16
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19620, which is a useful feature to capture the amino acid
197composition.

1982. Physicochemical properties (PP): Seven AU1different physiochemical
199properties per amino acid, namely, steric parameter, normal-
200ized van der Waals volume, hydrophobicity, isoelectric point,
201and helix and sheet probabilities, were collected from DisPre-
202dict2 [35] program. These features were originally reported
203in [62].

2043. Position-specific scoring matrix (PSSM): PSSM captures the
205conservation pattern using multiple sequence alignments and
206stores this pattern as a matrix of scores for each position in the
207alignment. High scores in this matrix represent more conserved
208positions, and scores close to zero or negative represent weakly
209conserved position. Thus, PSSM provides the evolutionary
210information in proteins. Evolutionary information is one of
211the most important kinds of information for protein function-
212ality prediction in biological analysis and is widely used in such
213studies [34, 36, 63–66]. We executed three iterations of
214PSI-BLAST [67] against NCBI’s nonredundant database to
215generate PSSM of size sequence length � 20, which gave us
21620 features per residue.

2174. Monogram (MG) and bigram (BG): The monogram (single
218feature) and bigram (20 features) were computed from PSSM
219by further extending the PSSM values to higher dimension.
220Both of these features were collected from DisPredict2 pro-
221gram. These features are found to be useful in protein fold
222recognition [68, 69] and various other applications such as
223disordered prediction [35] and protein-peptide binding [31].

2245. Local structural properties: We collected a total of eleven pre-
225dicted local structural features, which include three secondary
226structures probabilities for helix (H), beta (B), and coil
227(C) obtained from MetaSSpred [64] and three additional SS
228probabilities obtained from Spider 3 [26]; two torsion angles,
229phi (Φ) and psi (Ψ); one accessible surface area (ASA); and two
230half sphere exposure (HSE), namely, HSE-up and HSE-down.
231The torsion angles and HSE features were predicted using
232Spider 3 program. ASA was predicted using DisPredict2
233which generates this feature from Spine X [28].

2346. Flexibility properties: We include multiple flexibility properties
235of amino acids, which include two torsion angle fluctuations,
236dphi (∇Φ) and dpsi (∇Ψ), and one disorder probability. The
237torsion angle features can be originally predicted using DAVAR
238[70]; however, all the above features were extracted from
239DisPredict2.

2407. Energy features: Since many functional sites and active sites
241often occur in the polypeptide of β-α-β motifs, they play a
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242significant role in binding. The binding of protein and ligand
243involves formation and dissolution of atomic interactions that
244require change in free energy [71]. Thus, to capture the state of
245free energy contribution of residues, we include position-
246specific estimated energy (PSEE) which was also predicted
247using DisPredict2.

2488. Terminal region: Often terminal residues of a protein show
249higher flexibility. Thus, to distinguish the terminal residues
250from others, we included terminal indicator feature by encod-
251ing five residues of N-terminal as [�1.0, �0.8, �0.6, �0.4,
252�0.2] and C-terminal as [+1.0, +0.8, +0.6, +0.4, +0.2], respec-
253tively, whereas the rest of the residues were labelled as 0.0.

254Before using the features mentioned above into the classifier,
255different sized sliding windows were evaluated. This technique is
256used to incorporate neighboring information for each residue.
257Sliding windows work by aggregating information on both sides
258of the target residue. For example, if AU2window size 11 is chosen, the
259corresponding features for 5 neighboring residues are gathered on
260either side of the target residue which generates (11 � 65) or,
261715 features per residue.
262

2.4 Machine

Learning Algorithms

263In this study, we explored five different potential machine learning
264algorithms for the prediction of two types of SSSs: β-hairpin and
265β-α-β. The implemented algorithms are briefly discussed below. All
266of the classifiers used in our study are built and tuned using scikit-
267learn [72].

2681. K Nearest Neighbor (KNN) Classifier: The KNN algorithm
269compares an input to the K closest training examples [73]. A
270majority vote coming from the most similar neighbors in the
271training set decides the classification. We used Euclidean dis-
272tance as a metric for finding the nearest neighbors. As the idea
273of learning a model using KNN is simple, this method is
274computationally cheap. For all our experiments with KNN
275method, the value of K was set to 7 and all the neighbors
276were weighted uniformly.

2772. Extra Tree (ET) Classifier: The extremely randomized tree or
278ET [74] is one of the ensemble methods, which constructs
279randomized decision trees from the original learning sample
280and uses above-average decision to improve the predictive
281accuracy and control over-fitting. We constructed the ET
282model with 1000 trees, and the quality of a split was measured
283by Gini impurity index.

2843. Gradient Boosting Classifier (GBC): The GBC works by com-
285bining weak learners into a single learner in an iterative fashion
286[75]. We applied 1000 boosting stages where a regression tree
287was fit on the negative gradient of the deviance loss function. In
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288our implementation, the learning rate was set to 0.1 and the
289maximum depth of each regression tree was set to 3. GBC
290overcomes over-fitting with higher number of boosting stages,
291and we observed that 1000 stages were giving competitive
292performance for this application.

2934. Logistic Regression (LogReg): We used LogReg [76] with L2
294regularization for the prediction of SSSs. LogReg measures the
295relationship between the dependent variable, which is categor-
296ical (in our case: whether an amino acid belongs to SSSs type or
297not), and one or more independent variables by generating an
298estimation probability using logistic regression. It utilizes the
299sigmoid function to predict the output [77].

3005. Random Decision Forest (RDF): The RDF AU3[77, 78] operates
301by constructing a multitude of decision trees on various
302sub-samples of the dataset and results the mean prediction of
303the decision trees to improve the prediction accuracy and con-
304trol over-fitting. We used bootstrap samples to construct 1000
305trees in the forest.
306

2.5 Performance

Metrics

307To build the proof-of-concept of stacking versus non-stacking
308approach fast, we used threefold cross validation (FCV) [76, 79,
30980] to compare and evaluate the performance of each predictor.
310FCV is performed in folds, where the data is divided into m parts,
311which are each of about equal size. While a fold is set aside for
312testing, the other (m � 1) folds are used to train the classifier. This
313process is repeated until each fold has been set aside once for testing
314and then them estimates of error are combined to find the average.
315We employed various performance measures listed in Table 2 to test
316the predictive ability of various predictors. The majority of the
317metrics listed in the table are computed from the true positive
318(TP), false positive (FP), true negative (TN), and false negative
319(FN) metrics. TP refers to the number of instances that are cor-
320rectly predicted as positive. FP refers to the number of instances
321that are incorrectly predicted as positive. TN refers to the number
322of instances that are correctly labelled as negative. FN refers to the
323number of instances that are incorrectly labelled as negative. Recall
324is defined as proportion of real positive cases that are correctly
325predicted positive. Similarly, precision is defined as proportion of
326predicted positive cases that are correctly real positives. Likewise,
327F1 score is defined as the harmonic mean of recall and precision.
328The miss rate and fallout rate measure two complementary types of
329incorrect predictions. The miss rate is defined as proportion of real
330positive cases that occur as predicted negative. Similarly, fallout rate
331is defined as proportion of real negative cases that are correctly
332predicted positive. Furthermore, Matthews correlation coefficient
333(MCC) measures the degree of overlap between the predicted
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334labels and true labels of all the samples in the benchmark dataset.
335Lastly, the balanced accuracy is defined as mean of recall and
336specificity.
337

3383 Methods

339In this section, we discuss the implementation of stacking-based
340machine learning approach for the prediction of two types of super-
341secondary structures: β-hairpin and β-α-β only from sequence. We
342first discuss the results of individual classifiers and, subsequently,
343report the performance of various stacked predictors based on the
344benchmark dataset.

3.1 Stacking

Framework

345We applied the stacking technique [81] to deal with the sequence-
346based supersecondary structure prediction problem. Stacking is an
347ensemble technique which minimizes the generalization error by
348combining information from multiple predictive models to gener-
349ate a new model. Because stacking minimizes the generalization
350error rate of one or more predictive models, it has been successfully
351applied in several ML tasks [82–86] and recently has been shown to

t:1Table 2
Name and definition of the evaluation metric

Name of metric Definition t:2

True positive (TP) Correctly predicted supersecondary structures t:3

True negative (TN) Correctly predicted non-supersecondary structures t:4

False positive (FP) Incorrectly predicted supersecondary structures t:5

False negative (FN) Incorrectly predicted non- supersecondary structures t:6

Recall/sensitivity True Positive Rate TPRð Þ ¼ TP
TPþFN t:7

Specificity True Negative Rate TNRð Þ ¼ TN
FPþTN t:8

Fallout (or overprediction) rate False Positive Rate FPRð Þ ¼ FP
FPþTN t:9

Miss rate False Negative Rate FNRð Þ ¼ FN
FNþTP t:10

Accuracy (ACC) TPþTN
FPþFPþTNþFN t:11

Balanced accuracy (mean of specificity and recall) 1
2

TP
TPþFN þ TN

TNþFP

� �
t:12

Precision TP
TPþFP t:13

F1 score (harmonic mean of precision and recall) 2TP
2TPþFPþFN t:14

Matthews correlation coefficient (MCC) TP�TNð Þ� FP�FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFPð Þ TPþFNð Þ TNþFPð Þ TNþFNð Þ

p
t:15
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352work well with the prediction of protein-peptide binding sites [31]
353and prediction of DNA-binding proteins [54].
354The stacking method uses a two-tier learning framework. The
355first (i.e., base) tier consists of a collection of classifiers called base-
356learners. In the second (i.e., meta) tier, the outputs of the base-level
357learners are combined with the original input vector and fed to
358another classifier called a meta-learner. This method considers the
359fact that different base-learners can react to certain regions of the
360feature space poorly due to the no-free-lunch theorem [87]. Thus,
361using meta-learner in the second tier, the outputs of the base
362classifiers are combined with the aim of reducing the generalization
363error. For a better performance, it is desirable to choose classifiers
364that are highly uncorrelated to each other [31] or are different from
365each other based on their underlying operating principle as the base
366classifiers [54]. As stacking combines the outputs from the first tier
367in the second tier, this makes the stacking technique different from
368other ensemble methods like bagging and boosting as these tech-
369niques apply weighted average or majority vote to form a final
370prediction.
371The base and meta-classifiers used in the stacking framework
372for this experiment include (a) Logistic Regression (LogReg)
373[23, 76], (b) Extra Trees (ET) [74], (c) Random Decision Forest
374(RDF) [78], (d) K Nearest Neighbor (KNN) [73], and
375(e) Gradient Boosting Classifier (GBC) [75]. These algorithms
376and their configurations are briefly discussed in Subheading 2.4.
377For each algorithm, feature window size which results in best
378accuracy was identified, and then, the classifiers with their respective
379best window sizes were used in the stacking framework.
380In our implementation of stacking framework, we explored
381four different classifiers KNN, ET, GBC, and RDF as both meta-
382and base classifiers. While one of the four methods was used as the
383meta-learner, the rest of the methods were used as the base-
384learners. We dropped LogReg classifier out from stacking because
385it took longer to train this classifier on our benchmark dataset. The
386combinations of stacked model (SM) separately assessed for both
387β-hairpin and β-α-β in this study are:

3881. SM1: includes KNN, GBC, and RDF as base-learners and ET
389as meta-learner.

3902. SM2: includes ET, GBC, and RDF as base-learners and KNN
391as meta-learner.

3923. SM3: includes ET, KNN, and RDF as base-learners and GBC
393as meta-learner.

3944. SM4: includes ET, KNN, and GBC as base-learners and RDF
395as meta-learner.

396The output probabilities (probability p belonging to β-hairpin
397or β-α-β and probability (1 � p) not belonging to β-hairpin or

Michael Flot et al.



398β-α-β) generated by the respective base classifiers are combined
399with the original windowed feature vector to train a new meta-
400classifier. In our implementation, we found that a window size of
40111 gives the highest performance for each of the classifier. Thus, in
402stacking all the base-learners were trained using best window size
403feature vector of (65 � 11) or 715 and the meta-learners were
404trained using best window size features plus six additional proba-
405bility features, resulting into feature vector of (65� 11 + 6) or 721.
406The general framework of our stacking-based predictor is shown in
407Fig. 1.
408

3.2 Results 409In this section, we first present the results obtained from best
410window size selection experiment and then provide the compara-
411tive results of individual classifiers obtained on best window size
412and, subsequently, report the performance of the stacked predictors
413on the benchmark dataset.
414

3.2.1 Window Selection 415In this experiment, we searched for a suitable size of the sliding
416window (W) that determines the number of residues around a
417target residue, which could belong to SSS types of either
418β-hairpin or β-α-β. To select the optimal window size, we designed
419five different models using GBC classifier with five different win-
420dow sizes: 1, 3, 7, 11, and 13. The models were trained and
421validated using threefold cross validation on the benchmark data-
422set. Figure 1 illustrates the overall accuracy obtained for all the
423window sizes for both β-α-β and β-hairpin SSS types while using
424GBC classifier.
425From Fig. 2, we observed that the overall accuracy of the model
426increased drastically from window size 1 to 11, whereas, after
427window size 11, the increment is only after two decimal places.
428Thus, we selected window size of 11 as the best window size. All the
429methods used in the stacking were trained on window size 11 fea-
430ture vector.
431

3.2.2 Analysis and

Evaluation of Individual

Machine Learning

Algorithms

432Here, we analyze the performance of five individual classifiers, Log-
433Reg, ET, KNN, RDF, and GBC. The performance metrics of the
434classifiers were obtained by performing threefold cross validation.
435The predicted annotations of every residue were compared against
436the actual annotations obtained from the PROMOTIF program.
437From Table 3, we observe that the GBC gives an outstanding
438balanced as well as overall accuracy compared to other methods for
439the prediction of beta-alpha-beta SSS. The ET method resulted in
440the best recall or sensitivity of 0.705 and FNR or miss rate of 0.295.
441However, based on the rest of the performance measures, ET
442performed less accurately than the GBC. In addition, based on
443specificity, balanced accuracy, overall accuracy, FPR, precision, F1
444score, and MCC, the GBC outperformed other methods. It is also
445evident that the RDF is the second-best method based on balanced
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446and overall accuracy. Likewise, ET stands third, LogReg stands
447fourth, and KNN is the least performing method based on the
448balanced and overall accuracies.
449From Table 4, GBC provides an outstanding balanced and
450overall accuracy compared to other methods for the prediction of
451β-hairpin SSS. The ET method gave best recall or sensitivity of
4520.991 and FNR of 0.010. However, based on the rest of the

Fig. 1 Flowchart describing the stacking prediction framework. This framework
was applied for both β-hairpin and β-α-β separately
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Fig. 2 Performance comparison of different window sizes using GBC method for both beta-alpha-beta and
beta-hairpin SSS types. The accuracies of different window sizes are compared and used to decide the best
window size

t:1Table 3
Comparison of individual ML methods on predicting β-α-β SSS on the benchmark dataset using
threefold cross validation and feature vector with window size 11

Metric/method LogReg ET KNN RDF GBC t:2

Sensitivity 0.679 0.705 0.603 0.704 0.695 t:3

Specificity 0.576 0.595 0.550 0.608 0.626 t:4

Balanced accuracy 0.627 0.650 0.577 0.656 0.661 t:5

Overall accuracy 0.627 0.650 0.577 0.656 0.661 t:6

FPR/fallout rate 0.424 0.405 0.450 0.392 0.374 t:7

FNR/miss rate 0.321 0.295 0.397 0.296 0.305 t:8

Precision 0.615 0.635 0.573 0.642 0.650 t:9

F1 score 0.645 0.668 0.588 0.672 0.672 t:10

MCC 0.256 0.302 0.154 0.313 0.322 t:11

t:12Bold indicates best score
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453performance metrics, ET performed less accurately than the GBC.
454In addition, except the performance metrics sensitivity, FNR, and
455F1 score, the GBC showed better performance than other methods
456based on the rest of the measurements. Furthermore, we can see
457that RDF is the second-best method based on balanced and overall
458accuracy. Likewise, ET stands third, LogReg stands fourth, and
459KNN is the least performing method based on the balanced and
460overall accuracies.
461Next, we selected four of the ML techniques including GBC,
462RDF, KNN, and ET to use in our stacking approach. While one
463method was selected as the meta-learner, the others were selected as
464the base-learners. Table 5 shows the performance comparison of
465the combination of stacked models SM1, SM2, SM3, and SM4
466used for the prediction of β-α-β SSSs using threefold cross valida-
467tion on benchmark dataset. It can be seen from the table that the

t:1 Table 4
Comparison of individual ML methods on predicting β-hairpin SSS on the benchmark dataset using
threefold cross validation and feature vector with window size 11

Metric/method LogReg ET KNN RDF GBCt:2

Sensitivity 0.990 0.992 0.947 0.989 0.972t:3

Specificity 0.141 0.179 0.174 0.196 0.259t:4

Balanced accuracy 0.566 0.585 0.560 0.592 0.616t:5

Overall accuracy 0.781 0.791 0.756 0.793 0.796t:6

FPR/fallout rate 0.859 0.821 0.826 0.804 0.741t:7

FNR/miss rate 0.010 0.008 0.053 0.011 0.028t:8

Precision 0.779 0.787 0.778 0.790 0.800t:9

F1 score 0.872 0.877 0.854 0.878 0.878t:10

MCC 0.282 0.335 0.190 0.344 0.358t:11

t:12 Bold indicates best score

t:1 Table 5
Results of various stacked models for the prediction of β-α-β SSS

Method/
metric Sensitivity Specificity

Balanced
accuracy

Overall
accuracy

Fallout
rate

Miss
rate Precision

F1
score MCCt:2

SM1 0.709 0.609 0.659 0.659 0.391 0.291 0.644 0.675 0.319t:3

SM2 0.641 0.583 0.612 0.612 0.417 0.359 0.606 0.623 0.224t:4

SM3 0.693 0.620 0.657 0.657 0.380 0.307 0.646 0.669 0.314t:5

SM4 0.707 0.610 0.658 0.658 0.391 0.293 0.644 0.674 0.318t:6

t:7 Bold indicates best overall accuracy
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468SM1, which consists of ET as meta-learner, provides the highest
469overall accuracy of 0.659 followed by SM4, SM3, and SM2, respec-
470tively. Furthermore, except SM2 the overall accuracies of all other
471stacked models are close to each other with differences after two
472decimal places.
473Similarly, Table 6 shows the performance comparison of the
474combination of stacked models SM1, SM2, SM3, and SM4 used for
475the prediction of β-hairpin SSSs using threefold cross validation on
476benchmark dataset. It can be observed from Table 6 that the SM4,
477which consists of RDF as meta-learner, provides the highest overall
478accuracy of 0.796 followed by SM1, SM3, and SM2, respectively.
479Furthermore, except SM2 the overall accuracies of all other stacked
480models are close to each other with differences after two decimal
481places.
482Next, in Table 7, we show the comparison of overall accuracies
483achieved by individual methods with the accuracies obtained while
484the respective methods were used as the meta-learner in the stack-
485ing framework for the prediction of β-α-β SSSs. It is evident from
486the table that, while the methods are used as the meta-learner in
487stacking, they yield better accuracy compared to while the respec-
488tive methods are used independently. For example, while KNN was
489separately used for the prediction of β-α-β SSSs, we achieved an

t:1Table 7
Comparison of overall accuracies obtained by stacked models and the
individual methods for the prediction of β-α-β SSSs

Machine learning method Individual Meta-learner t:2

ET 0.650 0.659 t:3

KNN 0.577 0.612 t:4

GBC 0.661 0.657 t:5

RDF 0.656 0.658 t:6

t:1Table 6
Results of various stacked models for the prediction of β-hairpin SSS

Method/
metric Sensitivity Specificity

Balanced
accuracy

Overall
accuracy

Fallout
rate

Miss
rate Precision

F1
score MCC t:2

SM1 0.984 0.221 0.603 0.796 0.779 0.016 0.794 0.879 0.355 t:3

SM2 0.953 0.243 0.597 0.777 0.758 0.047 0.793 0.866 0.285 t:4

SM3 0.965 0.269 0.617 0.793 0.731 0.035 0.801 0.876 0.348 t:5

SM4 0.977 0.242 0.610 0.796 0.758 0.023 0.797 0.878 0.355 t:6

t:7Bold indicates best overall accuracy
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490overall accuracy of 0.577 or 57.67%. However, while KNN was
491used as the meta-learner, we achieved an overall accuracy of 0.612
492or 61.2%, which is 6% higher than while KNN was used separately.
493This indicates that the stacking-based methods can be useful in
494predicting the supersecondary structures.
495Similarly, in Table 8, we show the comparison of overall accura-
496cies achieved by individual methods with the accuracies obtained
497while the respective methods were used as the meta-learner in the
498stacking framework for the prediction of β-hairpin SSSs. Table 8
499also shows that stacking yielded better accuracy compared to indi-
500vidual methods for the prediction of β-hairpins except for stacking
501model in which GBC was used as a meta-learner. In case of GBC,
502the accuracy seems to slightly decrease. This decrease in accuracy is
503negligible however and occurs after the second decimal place.
504Moreover, the results for all other cases indicate that stacking
505resulted in better accuracy compared to the individual methods in
506this study.
507

5084 Notes

5091. The stacking-based machine learning predictors have been uti-
510lized in various bioinformatics applications [31, 54, 84, 86,
51188]. Among others, Iqbal et al. recently proposed a stacking
512framework, called PBRpredict-Suite, to predict peptide-
513binding residues of receptor proteins from sequence
514[31]. They first compared six predictors to find the best predic-
515tor (SVM) and the two predictors least correlated with it (GBC
516and KNN) to use as base-learners. These base-learners’ proba-
517bility outputs were then used to train a logistic regression-
518based meta-learner. As reported, PBRpredict-Suite provides
519the best accuracy of 80.4% for the prediction of protein-peptide
520binding residues. Moreover, very recently, Mishra et al. applied
521stacking to develop a predictor, called StackDPPred, to predict
522DNA-binding proteins from sequence [54]. They combined

t:1 Table 8
Comparison of overall accuracies obtained by stacked models and the
individual methods for the prediction of β-hairpin SSSs

Machine learning method Individual Meta-learnert:2

ET 0.791 0.796t:3

KNN 0.756 0.777t:4

GBC 0.796 0.793t:5

RDF 0.793 0.796t:6
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523machine learning methods SVM, Logistic Regression, KNN,
524and RDF which are different from each other based on their
525underlying operating principle at the base layer. Next, to enrich
526the meta-learner (SVM), the original feature vector was com-
527bined with the base predictor probabilities. As reported,
528StackDPPred provided an accuracy of over 89% on benchmark
529dataset and an accuracy of 86.5 and 85.95% on two different
530independent test datasets, respectively.

5312. Stacking-based predictors AU4developed recently [31, 54] use
532SVM either as a base-learner or as the meta-learner, whereas
533in this application of supersecondary structure prediction, we
534were unable to use SVM because of the time constraint as it
535took longer to train. The SVM has been proven to be a very
536useful machine learning algorithm for various bioinformatics
537applications [32, 35, 36, 89]. Therefore, using SVM as either a
538base-learner or meta-learner could significantly improve the
539accuracy of supersecondary structure prediction. We propose
540to use SVM as a learner in our stacking application in our future
541work on supersecondary structure prediction. SVM is a fast
542learner; however, its optimization using grid search for RBF
543kernel parameters is often found impractically slow, especially
544for larger dataset.

5453. Feature ranking and selection techniques have also been suc-
546cessfully applied in numerous applications including bioinfor-
547matics to improve the accuracy of the machine learning-based
548predictors [29, 32, 90]. Identifying relevant features and
549removing unimportant or redundant features can reduce com-
550putation time and improve results. In our future work, we will
551implement various feature ranking and selection techniques to
552improve the accuracy of our current supersecondary structure
553prediction approach.

5544. Here, we present a review of some recently developed super-
555secondary structure prediction methods. In one of the recent
556work, Sun et al. developed a predictor which uses statistical
557approach and SVM to predict β-α-β motifs [2] from sequence
558but uses predicted secondary structure labels to predict β-α-β
559motifs. Similarly, Jia et al. proposed a predictor which also uses
560statistical approach and RDF to predict β-α-β motifs [41]. In
561this work, authors used DSSP and PROMOTIF software to
562obtain the secondary structure and supersecondary structure
563labels. Additionally, they performed a statistical analysis on
564β-α-β and non-β-α-β motifs and only selected the motifs that
565contain loop-helix-loop length from 10 to 26 amino acids. One
566major difference between these approaches and the method
567proposed in this study is that we predict any length of β-α-β
568motifs, while other methods only select the motifs that contain
569loop-helix-loop length from 10 to 26.
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5705. For intermediate steps, a more reliable SS prediction could
571improve the accuracy of SSS prediction: instead of utilizing
572single SS assignment method such as DSSP [61], the
573consensus-based SS label assignment would generate better
574SS assignment. For example, utilizing consensus of DSSP
575[61], STRIDE [91], and KASKI [92] methods, where final
576class label is generated based on majority vote from the assign-
577ment of these programs, could improve the SS assignment
578which could subsequently lead to better SSS prediction. This
579leverages the fact that each assignment software approaches this
580problem in different ways. Combining multiple methods
581should theoretically correct inaccuracies that can come from
582using single label generation method.

5836. In real-world applications, computing resources and comput-
584ing time are important factors in deciding which machine
585learning algorithm to use. It is common to weigh predictive
586accuracy against computational time to decide which method
587to use. In our application, we found that the SVM and LogReg
588were the two methods which took longer to run. Thus, due to
589time constraints, we discarded these methods for the prediction
590of supersecondary structures in this work. We look forward to
591implementing these methods in our future work on SSS
592prediction.

5937. For the readers’ convenience, links to the software necessary
594for feature and annotation collection are provided below:

595(a) Dispredict2: http://cs.uno.edu/~tamjid/Software.html

596(b) PSI-BLAST: https://blast.ncbi.nlm.nih.gov/Blast.cgi

597(c) Spider 3: http://sparks-lab.org/server/SPIDER3/

598(d) PROMOTIF: http://www.img.bio.uni-goettingen.de/
599ms-www/internal/manuals/promotif/promotif.html

6008. While predictors for a few major class of SSSs have been pro-
601posed and tested, many have not been approached due to the
602limited scope of this article. Some interesting structures for
603further research are listed below:

604(a) α-Helix hairpins

605(b) Psi loop

606(c) Greek key

607(d) Rossmann motifs

6089. For our future work, we intend to improve the accuracy of
609stacking-based prediction for supersecondary structures using
610various feature ranking and selection technique as well as
611including SVM, LogReg, and other useful machine learning
612methods in our stacking framework. We also intend to develop
613stacking-based machine learning predictors for coiled coil, Psi
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614loop, and other SSS types. Furthermore, we plan to develop a
615stacking-based software suit (tool) to predict multiple types of
616SSSs through a single complex framework. Finally, we will
617explore deep learning-based techniques for the prediction of
618supersecondary structures.
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