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Images containing rip channels are used in oceanographic studies and can be preprocessed for these
studies by identifying which regions of the image contain rip channels. For thousands of images, this
process can become cumbersome. In recent years, object detection has become a successful approach for
identifying regions of an image. There are several different algorithms for detecting objects from images,
however, there is no guidance as to which algorithm works well for detecting rip channels. This paper
aims to compare and explore state-of-the-art machine learning algorithms, including the Viola-Jones
algorithm, convolution neural networks, and a meta-learner on a dataset of rip channel images. Along with
the comparison, another objective is to find suitable features for rip channels and to implement the meta-
classifier for competition with the state of the art. The comparison suggests the meta-classifier is the most
promising detection model. In addition, five new Haar features are found to successfully supplement the
original Haar feature set. The final comparison of these models will help guide researchers when choosing
an appropriate model for rip channel detection, the new Haar features provide researchers with valuable
data for detecting rip channels, and the meta-classifier provides a method for increasing the accuracy of
a detector through classifier stacking.
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1. Introduction generally identified with time-exposure images as instantaneous
snapshots do not provide enough contrast between rip channels
and sandbar crests [4]. These time exposure images reveal a spe-
cific type of rip channel known as a bathymetrically-controlled
channel [1]. Since this type of rip channel is exposed through im-
ages, they will be the focus of the study. Time exposure images are

created by time averaging video frames over a user-defined period,

Rip currents are narrow currents that flow seaward through the
surf zone of a beach [1] and are a significant hazard to swimmer
safety [2]. Rip currents are caused by alongshore variations in
wave breaking. In many cases, rip currents are strong enough to
transport seafloor sediments, creating a bathymetric low, or rip

channel, through the surf-zone sandbar. Some rip channels are
readily visible in processed video imagery, and serve as a proxy
for the location of potentially dangerous rip currents, making rip
channels a popular topic of investigation [3]. Rip channels are
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frequently 10 min for coastal imagery. A full description of the
technique for creating time exposure imagery in the coastal area
is available in [3]. Time exposure images reveal the location of rip
channels as a region of dark pixels, where waves are not breaking,
between bright pixels associated with foam generated by wave
breaking over a surf-zone sandbar (Fig. 1). Time exposure images
can be orthorectified by the process described in [5,6] to create
a map view of the beach. Then, the location of rip channels can
be identified. While the location of rip channels are an important
aspect of oceanographic research [7], the process of identifying rip
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channels in time exposure imagery is labor intensive, and there has
been little research done in automatically detecting the location of
rip channels from images. With better observations of rip channels,
the fundamental understanding of rip channel behavior will be
improved. One possible solution to this problem is to apply object
detection algorithms to each image.

Object detection has become a popular approach to find cer-
tain regions within an image [9-11]. Object detection methods
are applied to a wide variety of objects, which makes applying
such techniques to rip channel images intuitive. There are several
popular detection algorithms to choose from in the literature, such
as convolutional neural networks or Viola-Jones, yet, there is little
research supporting which algorithm is appropriate for channel
rip-current detection. A comparison of state-of-the-art models
should determine an effective and efficient classifier. The meth-
ods chosen for comparison are the Viola-Jones object detector,
deep learning particularly convolutional neural networks (CNN),
support vector machines (SVM), max distance from the average
rip channel image using principal component analysis (PCA), and
the meta-classifier [12]. The Viola-Jones algorithm was chosen
because of its efficiency and resistance to overfitting. Deep learning
is a popular solution to many object detection problems because
of its utilization of modern computing power. Convolution neural
networks, in particular, have the ability to create their own feature
data instead of the user supplying data. SVM'’s tend to have high
performance with high dimensional data, which images naturally
contain. PCA is a technique that is typically utilized for image
recognition, not detection. However, it can identify which regions
of an image are more unique to that specific image than other
regions, which is useful for finding detectable image features.

This paper aims to compare state-of-the-art object detection
models on rip channels, which will guide researchers in choosing
an algorithm for detecting rip channel location from images. The
Haar features applied by the Viola—Jones algorithm are optimized
for faces. Therefore, this paper also aims to create Haar features like
the Viola—Jones features but optimized for rip channel detection.
The last objective is to provide a competitive model for rip channel
detection through a technique called classifier stacking.

Section 2 describes the background associated with the detec-
tors. Section 3 identifies how each model is built and identifies the
dataset for each model. Section 4 describes the specific implemen-
tation details of each model. Section 5 shows the results of the
experiments. Section 6 contains an overall discussion of the pros
and cons based on the methods. Finally, Section 7 discusses the
conclusions.

2. Background

This section contains a background of rip channels and object
detection research fields.

2.1. Rip channels

Time exposed images constrain sandbar and rip channel lo-
cations [4]. The rip channels identified in this type of imagery
are usually channel rip-currents or bathymetrically controlled rip
currents. Rip channels are usually studied in situ [13] or with
imagery [14-16]. The in-situ methods conduct a sonar survey
of bathymetry. These data can be processed to determine the
locations or morphology of rip channels. However, the cost and
effort associated with surveying rip channels are often prohibitive.
Naturally, studies involving imagery substitute these tools for the
imagery to gather data. The primary focuses of study for rip chan-
nels when using imagery are morphology, or shape, [15] and lo-
cation [1,14,16]. Some studies involving rip channel morphology
have applied computer-based techniques to locate rip channels

using semi-automated algorithms with expert corrections to find
maxima and minima pixel intensity values [15]. Rip channels tend
to appear darker than the rest of the surf zone, which is why pixel
intensity is a popular approach. Other studies involve finding rip
channel location [14,16]. Each of the mentioned studies involves
identifying rip channels through imagery, however, only [15]
attempts an automated approach, and it is semi-automated. There
is a clear lack of research applying machine learning to create fully-
automated methods for finding rip channel locations in imagery.
Finding a fully-automated method has possible applications for
object detection.

2.2. Machine learning based object detection

Machine learning employs algorithms that fit data to a
model [17]. These models can then make predictions on data
samples that the model has not come across. Fitting data to make
predictions is the basic process of learning. To learn, models train
on a set of features, which describe each sample in a numerical
fashion. A model making a prediction on regions of an image after
training on features extracted from the image is known as object
detection.

In recent years, object detection has become a popular method
to automatically identify regions of an image [10,11,18]. Object
detection has numerous algorithms to choose from because of
the wide variety of machine learning techniques in the literature.
Therefore, a comparison of such algorithms is valuable when de-
ciding which one is most appropriate for rip channel detection. Rip
channels are a lack of focus for object detection, which also creates
a critical need for adequate rip channel features in addition to a
comparative study of algorithms. The optimized features increase
the accuracy metrics by which the models are compared. Compar-
ing models requires relevant, realistic metrics. In object detection,
a couple of the most commonly applied metrics are the detection
rate and false positive rate. These metrics represent how accurately
a model can identify rip channels and avoid misclassifying non-
object samples, respectively. Examples of popular object detection
algorithms are Viola-Jones [9] and convolutional neural networks
[10,11,18].

Viola-Jones has success in the area object detection, specifically
with faces [9]. This is due to its speed and robust nature. Viola-
Jones employs the Ada-boost algorithm, which is highly resistant
to overfitting [19]. This is a desirable quality as the dataset con-
tains a high amount of variance. Viola-Jones contains a series of
layers, which detect the object in question. Every layer has its
own detection rate and false positive rate. The total rate for the
cascade is a product of each layers’ rates. Viola—Jones has a set of
optimized features for face detection, called Haar features. These
are rectangular regions that correspond to different areas of the
face. They are easily applicable because of their near instantaneous
evaluation speed.

Convolutional neural networks are also successful in detecting
many types of objects [10,11,18]. These networks create their own
features for detecting objects, which are based on image filters.
Over thousands of samples, the networks learn which filters are
important to a specific object. The networks then apply the learned
filter to detect the object sought after. These networks need hun-
dreds of thousands of samples to train on because they overfit
easily on a small dataset due to being formulated as high order
polynomials for flexibility.

3. Methodology

This section describes how each detector is set up and run for
comparison, including max distance from the average rip channel
image, SVM, convolutional neural networks, Viola-Jones, and the
meta-classifier. The detectors are compared on a test set of rip
channel images with detection rate and false positive count. All
metrics are generated using 10-fold cross-validation.
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Fig. 1. Anexample image of the Secret Harbour, Australia shoreline [8]. The rip channels are seen in red boxes. The numbers around the borders of the image indicate meters

from the camera.
3.1. Dataset

The dataset contains 514 rip channel examples, including the
test dataset [20]. These samples are all channel rip currents, that
is, bathymetrically-controlled rip channels. These rip channels are
24 pixel by 24 pixel images extracted from 1334 pixel by 334 pixel
images. Larger images are downloaded from the backlog of beach
imagery on the Oregon State University website [8]. The images
are timex images that have been orthorectified with the process
mentioned in Section 2.1, which gives them a map view appear-
ance. Images are a time average of 1200 frames collected at 2 Hz
over 10 min. Images average about 2 to 4 rip channels per image.
In total, are 102 images of shorelines that contain the extracted
rip channel samples. Small rip channel samples are extracted with
the GIMP image editor. The entire rip channel is extracted from the
image, not just one aspect of the channels in particular. This is done
because object detection algorithms typically take the entire object
and the small region around the object as input. 3 to 4 timex image
are taken per day, during daylight hours, by the cameras located at
Duck, North Carolina and Secret Harbour, Australia. Rip channels
occur frequently at these two sites. An example rip channel image
from these sites is seen in Fig. 1. Fig. 1 contains 5 rip channels
indicated by red rectangles. These types of images are given, as
input, to the detectors. The rip channel samples, extracted from
these large images, are all normalized to 24 pixels by 24 pixels for
standard Haar feature calculation. This is done since 24 pixels by 24
pixels is the smallest possible input size of an image. In the GIMP
editor, images that are not 1:1 are scaled using cubic interpolation.
After being reduced to 24 by 24, the samples are also converted
to grayscale. This is done to help minimize the effect of different
lighting effects on the detection models. 10-fold cross validation
splits the dataset accordingly for evaluation, where each fold is 10%
of the dataset. The models train on the remaining 90% and evaluate
on some fold. This is repeated until each fold has been evaluated on.

Convolutional neural networks used in this study need to train
on many thousands of images to attain decent results [ 18]. There-
fore, creating a larger dataset is necessary. The process of data
augmentation can create new, positive samples by applying dis-
tortions to every sample. These samples can then impose onto a
larger background image. A warp factor of 0.1 creates a dataset of
4000 rip channel images [21]. This process can also create more
negative samples in a similar fashion. This dataset is compared
with the small dataset since the models can accept either as input.
A comparison of datasets helps determine the most effective type
of input for each model.

3.2. Threshold from the average rip channel image using PCA

The process of object detection is simplified if a range of val-
ues representing rip channels is found. Normally, a model must
train on a dataset of positive and negative samples. Eliminating
the negative samples simplifies the size of the dataset. To this
end, principal component analysis (PCA) is employed [22]. An

Algorithm 1: Training and Detection using PCA

Given: R (count) Rip-channel images, each of size 24 x 24.

/] =mmmmmmmmeeee Training Phase
Convert each 24 x 24 image into a 576 x 1 vector.

Compute the average training image, avg (576 x 1).
Compute the normal-vector, by deducting avg from each vector.
Form normal-vector matrix, N (576 x R).
Compute the covariance matrix M = N'N.
Compute Singular-Value-Decomposition (svd) of M,
[U,E, V]=svd (M); // U= EigenVector.

Project the normal-vectors towards the EigenVectors, as: U=N * U
Pick desired (say, k) Eigen-Rips: U,= U(:,1:k)

// Iteratively, determine best k using Test-datasets.
9 Compute, Training-Feature, TRFy . = N"*U,.

A N AW -

e

R Detection Phase
10 Pick a 24 x 24 Test-image (E) and convert into a 576 x 1 vector.
11 Compute the normal-test-vector, Ss7 . 1, by deducting avg from E.
12 Compute Test-Feature, TEF, « = (Ssz6x1)" * Uy 576 x k.
13 If|| TEF, «\ - TRF;. || £ T, for the average of i, where, i =1 to R,
then E is a Rip-channel image, else not.
// Ty is the max. threshold distance, determined iteratively.

Fig. 2. A depiction of the max distance (T,) from the cluster of positive images
classify a given image.

example of the method (Algorithm 1) is shown in Fig. 2. This
method reduces the number of dimensions in the 24 by 24 image
dataset of a rip channel into a number of chosen components from
the Eigenvector. Each component is projected upon to generate a
max distance (threshold, Ty,) from the average rip channel image.
Around 300 max distances from the average are generated from the
components. A maximum distance from the average feature vector
is found by first finding the average feature vector. Projecting a
rip channel vector upon 1 component generates a rip channel
feature vector of size 1. Finding the greatest distance between
any feature vector and the average feature vector creates the max
distance (Tj,) from the average. This is applied as a threshold for
rip channel identification. If a new data sample, projected upon a
component, generates a feature vector with a distance less than the
max distance (Ty), then it is classified as a rip channel. Otherwise,
it is classified as not a rip channel. The thresholds are tested for
their detection rate and false positive count with 10-fold cross-
validation.

3.3. Support vector machines

Support vector machines require the user to provide features
for training. The Haar feature space contains over 200,000 possible
features for a 24 pixel by 24 pixel window. This is a descriptive
set with success in object detection, but over 200,000 dimensions
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Background

(A) (B)

Fig. 3. Image (A) is an example of a rip channel sample in grayscale. Image (B) is a
segmented version of the same image.

Table 1

Hyperparameters for the CNNs.
Model Inception Mobilenet
Activation Softmax Rectifier
function
Initial weights Std. dev 0.01 Std. dev 0.03
Batch size 1 24
Dropout for - 0.8

regularization

Learning rate 0.0003 at O iterations 0.004 at 0 iterations

0.0003 at 900000 iterations Decay factor 0.95
0.00003 at 1200000
iterations

Momentum 0.9 0.9

are too many to learn in a reasonable amount of time and memory
usage. Instead, an average of each type of Haar feature is taken at
the cost of descriptive information. In addition to these averages,
circularity [23] and black-white ratio are added to the feature
vector for each sample. Circularity is taken from the segmented
image by finding all connected components in the binary image.
An example is shown in Fig. 3. The rip channel object is in black
while the background is in white. The equation for circularity is
shown in (1).

Object’s Circularity = 47 (Area/Perimeter?) . (1)

In Eq. (1), for a segmented object, Area is the total count of how
many black pixels do not have white neighbors, while Perimeter
is the total count of how many black pixels have white neighbors,
where neighboring pixels are defined, in 2D, as the 4 non-diagonals
but topologically adjacent pixels. This circularity-measurement
(1), assumes that the object is in black and the background is in
white.

The black-white ratio is taken from an image of a rip channel
where each pixel is converted to totally black or totally white,
depending on a threshold. The black-white ratio is chosen as a
feature based on the intuition that similar, normalized objects will
have a similar black-white ratio.

3.4. Convolutional neural networks

Recently, convolutional neural networks have become a popu-
lar method for deep learning and object detection [10,11,18]. The
CNNs chosen are the “Mobilenet” and “Inception” models. The
Mobilenet model is geared more toward speed [ 10] while Inception
is geared more toward accuracy [11]. These networks are chosen
as the first steps in evaluating CNN capabilities on detecting rip
channels. The models use hyperparameters defined in Table 1.

The Inception model trains for 156 284 iterations while the
Mobilenet model train for 442691 iterations. They train on the
augmented dataset as they require thousands of images. Note

Fig. 4. The matrix of the new features laid on top of a rip channel image. Each
number represents an area of space that can be extracted from the integral image
to use in a Haar feature formula.

that, they each train for five weeks, but one model simply iterates
faster. The models then run 10-fold cross-validation on the set of
rip channel images. A common approach to CNN is to use pre-
trained models to build a network and simply fine-tune it to the
desired object. An explanation for why this approach is not taken
is discussed in Section 4. Overall, the research involving the CNN’s
is still in a very preliminary stage and, though the results of the
initial testing are presented, will not be compared directly to the
other methods.

3.5. Viola-jones method

A combination of different images creates a set of Viola-Jones
cascades. There are 5 total cascades created. The first cascade trains
on the small dataset of rip channels and negative images [20]. The
second cascade is built with the small rip channel dataset and a
large dataset of surf zone negatives. The third cascade is built from
small rip channel images and a large negative dataset of any image.
The fourth cascade is built with created negatives of the surf zone
and the larger positive image dataset. The last cascade is built with
created negatives of any image and the large created dataset of rip
channels [21]. The cascades are run on the test set of images after
they train to completion. A false positive threshold of 0.7 per layer
and detection threshold of 0.994 per layer train each cascade.

3.6. Meta-classifier

The following section describes features that the meta-classifier
trains on and how it is developed.

3.6.1. Novel features

The Viola-Jones Haar features are successful in detecting faces.
Naturally, an optimized set of Haar features is needed to effectively
detect rip channels. 19 new Haar features are created with a 3 by
3 matrix by changing the formula for calculating the difference of
regions. The matrix for creating the Haar features is seen in Fig. 4.
In Fig. 4, each number of the matrix corresponds to a region of
intensity values in the image. The average rip channel image has
2 important regions: the middle of the image and the top-center
of the image. These are regions 2 and 7 in the matrix (see Fig. 4),
respectively. Regions 2 and 7 help create the most accurate Haar
feature for rip channels. These features are tested by creating layer
1 of a Viola-Jones cascade 10 times over with a random set of
negative images for each layer test. The performance metrics are
averaged over the 10 built layers. The results of running the tests on
each Haar feature are seen in Table 2. The formula for each feature
in Table 2 is found by adding some combination of integral image
regions from Fig. 4 together then subtracting other regions from
the total.

InTable 1,“X”,“T;”, “Inverted T;”, “Three columns”, and “Cross”
finish the test and are added to the total Haar feature space. Ada-
Boost finds the most appropriate Haar features for rip channels
from both the original (see Fig. 5) and the new features (see Fig. 6).
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Table 2

The results of using each feature to train 10-layer cascades of weak classifiers. The Formula column refers to the matrix

described in Fig. 4.

Feature pattern Formula Detection rate False positive rate
X [14+34+446]—[7] 0.996 0.5
T [T+24+345]—[7] 0.996 0.5
Inverted T, [64+4+54+7]—12] 0.995 0.6
Three columns [3+9+6+1+8+4+7+5]—]2] 0.996 0.5
Cross [24+7+9+8]—[5] 0.995 0.8
I [1+3+4+6]-[2+7+5] 1 1
T, [1+3]—-[2+4+7+5] 1 1
Short T3 [1+3]—[2+7] 1 1
Inverted T, [64+4]—[5+2+7] 1 1
v [1+3]-[7] 1 1
A [4+6]—[7] 1 1
[ [5+7+2]—[6+3] 1 1
[2 [5+24+6+3]—[7] 1 1
I [54+24+14+4]-[7] 1 1
> [1+4]-1[7] 1 1
< [3+6]-1[7] 1 1
2 [3+6+4+9]—[2+5] 1 1
[3 [84+4+1]—[245] 1 1
L [6]—[2+7+5] 1 1

Subscript in the feature-pattern indicates the variations of that particular pattern.

-1 B

Fig. 5. Example Haar features (A) The “Three Horizontal” feature, (B) The “Two

Horizontal” feature, (C) The “Three Vertical” feature, (D) The “Two Vertical” feature,
(E) The “Four” feature [9].

Choosing appropriate features is done by first building a 10-layer
Viola-Jones cascade. Then, each Haar feature result is appended to
the feature vector for training until detection rate levels off for each
basic model. The distribution for the final feature vector that trains
the meta-classifier is 70% face features 30% rip channel features.

3.6.2. Meta-Classifier

The meta-classifier trains on the confidence of previous models.
Confidence values from other models alleviate what a model may
lack [12] in terms of performance. The basic models include SVM,
neural network, decision tree, random forest, k-nearest neighbors,
Naive Bayes, bagging, and Ada-boost. The first 77 Haar features,
chosen by Ada-boost, train each basic classifier. 10-fold cross val-
idation yields the probability of the models. Every rip channel
sample has a training vector of 85 after adding the 8 output con-
fidence values from the basic models. The 85-feature vector trains
the meta-classifier. Each model that generates confidence values
for training the meta-classifier is also evaluated as the final meta-
classifier model to find the best fit. The meta-classifier is added
to the back of the Viola-Jones cascade to reclassify its output.
Therefore, this further reduces the number of false positives while
attempting to keep the same detection rate.

4. Implementation

The max distance from the average rip channel image is gen-
erated and applied for classification through (PCA) in Matlab. The
Matlab routinesvd (singular value decomposition) is run to gener-
ate the Eigenvector.

L F%T
-

Fig. 6. Rip Channel Features: (A) “Three columns”, “X”, (D)

“Ty” and (E) “Cross”.

“Inverted T;",

The Scikit-learn package in Python runs the SVM [24]. This
contains its own grid search method to find the optimal param-
eters. Matlab is used to generate the circularity and black-white
ratio features. The Matlab routine bwconncomp generates the seg-
mented images from the binary images, which are used to calculate
circularity. The black-white images are generated from Matlab
routine imbinarize. This routine uses a globally defined threshold
to set all pixel intensities in the image to either 0 or 1. These images
help calculate the black-white ratio feature. The SVM uses a radial
basis function (RBF) kernel. Grid search, inside the Scikit-learn
package, optimizes the parameters, C and gamma, for the kernel.
The results of the grid search for the small dataset of rip channels
are C = 4.0 and gamma = 0.00390625. A robust scaler object [25]
from the Scikit-learn package is applied to the rip channel data,
which scales data based on an interquartile range (IQR) between
the 25th and 75th quartile. A range is created for each feature in
the training set.

The convolutional neural networks in this study are built from
the TensorFlow framework [26], which is developed by Google.
TensorFlow’s default configurations build both the Inception and
Mobilenet models. Pre-built configurations and the framework
make it easier to generate results since parameters are pre-defined.
It is possible to retrain a network instead of building one from
scratch. However, this required preprocessing the images in a
more complex manner. Due to time constraints, this route was not
chosen but would be useful to explore later. The parameters are
not fine-tuned for the dataset for the same reason. As stated in
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Table 3 Table 5

A comparison of methods when searching for an image for rip channels. The results for each Viola-Jones cascade.
Method Detection rate False positive Model Detection rate FP count

count Small Pos Non-Surf Neg 0.88 15

Max distance from average 1.0 >400 Created Non-Surf 0.63 6
SVM 0.98 >400 Created Surf 0.63 6
Viola-Jones 0.88 15 Small Pos Surf Neg 1 75
Meta-Learner 0.85 8 Small Pos Small Neg 1 300

Table 4 Table 6

The results for adding different features and grid search for the SVM.

Training the meta-classifier on different types of Haar features.

Change Detection rate

Types of Haar features Detection rate False positive

of the SVM training meta-classifier count
Average Haar features 81% Original face features only 0.83 12
Circularity, black-white, and average Haar 85% Rip channel features only 0.84 14
Grid search and scaling with all features 95% Both 0.85 8

Section 3, the research done using these networks is preliminary
and would not be a fair comparison with the other methods in its
current state. Therefore, the results of applying the networks with
pre-defined parameters are shown but are not directly compared
to the other methods.

The OpenCV package [27] has an implementation of the Viola-
Jones algorithm for use with any object. This package in Python
builds the cascades using opencv_traincascade. The OpenCV pack-
age is also used for creating new samples described in Section 3.1.

Most of the Scikit-learn [24] models are used as basic classifiers
to generate confidence values for each rip channel sample. Each
model except for SVM run with the default Scikit-learn parameters.
The SVM parameters are described in paragraph 2 of this section.

5. Results

This section describes the false positive count and detection
rate for each of the previously mentioned methods of comparison
except CNN’s. Table 3 shows a comparison of Viola-Jones, SVM,
max distance from the average, and the meta-classifier at optimum
performance. The meta-classifier provides the best performance if
the lowest false positive rate is desired, by reducing the number
of false positives by 47% from Viola-Jones. Max distance from
the average has the lowest performance on the dataset in this
comparison.

The results for max distance from the average using PCA are
shown in Fig. 7. Here, the detection rate per component of the
Eigenvector decreases toward the back of the vector. The false
positive counts remain unaffected.

The results for training the SVM with the average Haar feature
vector is shown in Table 4. The SVMs detection rate reaches a max
of 95% after scaling, optimization, and adding both circularity and
black-white ratio.

The results for the convolutional neural networks are shown in
Figs. 8 and 9. The detection rate of the Mobilenet model is absent
until 221 345 iterations of training since it produces no predictions.
The Mobilenet detection rate slightly increases to 0.019 after this
point. The false positive count remains at 0. The detection rate
and the number of false positives for the Inception model increase
to 0.5 and 100, respectively, after 118713 iterations. Then, the
detection rate and false positive count steadily decrease as the sim-
ulation reaches 158 284 iterations. An example image run through
the Inception model can be seen in Fig. 10.

The results for each cascade are shown in Table 5. “Small Pos
Non-Surf Neg”, “Created Non-Surf’, “Small Pos Surf Neg”, and
“Created Surf” train on the created negative datasets. “Small Pos
Small Neg” trains on the 24 by 24 rip channel dataset and 24 by
24 negative surf zone samples [20]. “Created Surf’ and “Created

Non-Surf” train on created positive images [21]. The small dataset
of rip channels and the large dataset of any negative samples have
the best tradeoff of detection rate and false positives found.

Table 6 displays the results of training the meta-learner on
different Haar features. Applying both face and rip channel Haar
features gives the highest benefit to the meta-learner. Table 7
shows the detection rate and false positive count for each model
before and after stacking. Ada-Boost and Bagging both have the
highest detection rates and lowest false positive counts after stack-
ing.
The meta-classifier compared to Viola-Jones at different layers
is shown in Table 8. The meta-classifier improves the false positive
performance at each layer it is applied. It is important to note
that the meta-classifier at layer 28 provides better performance
than adding 12 layers to the cascade. An image that has been
run through the meta-detector and Viola-Jones detector is seen
in Fig. 11. The image runs through Viola-Jones contains a larger
number of false positives.

6. Discussion

This section discusses the advantages and disadvantages of each
method based on the results found.

6.1. Threshold from the average rip channel image using PCA

Threshold from the average rip channel has the benefit of not
needing to train a model. An average is taken and compared again
any potential sample. In addition, PCA can generate the features
needed from the image, which avoids having to design features.

Projecting onto 1 component results in a major loss of descrip-
tive information, which contributes to the inability to tell non-rip
channels from rip channels.

6.2. SVM

SVMs tend to work well with high dimensional data [28]. They
also have a very high detection rate on the dataset. The shortcom-
ings start with parameter requirements.

In order to optimize the SVM, its optimal parameters must be
found with grid search, similar to CNNs. This can take a great deal
of time to complete. In addition, SVMs lack any kind of cascading
architecture. This gives them a disadvantage when classifying win-
dows that do not contain rip channels. This is a rather small dataset
of rip channels, which implies a small dataset of negative images
to train on. It is impossible to differentiate rip channels from all
possible negative images that may appear with one trained SVM
since can be billions of negative sample possibilities to classify.
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6.3. CNN

CNNs have the advantage of generating their own features
through the use of feature maps.

They learn which filters are meaningful to the object in question
through training and convolution. CNNs are highly customizable
through parameters and a capable of detecting multiple objects in
the same image.

Their disadvantage is how easily they overfit to a dataset.
Though the results could reflect training on artificially created
samples, the hyperparameters are not fine-tuned for rip channels.
CNN'’s take a long time to train from scratch and longer to validate
the hyperparameters needed to optimize them. There are not
enough samples to properly train the CNNs as these models require
hundreds of thousands of samples. Although the Inception model
is able to identify some regions with rip channels, it is imprecise in
its detections.
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Fig. 10. An image classified by the inception model after 3 weeks of training. The green boxes show possible rip channels predicted by the CNN in the image. The red boxes

show the actual rip channels.

(&)

Fig. 11. Image (A) shows standalone Viola-Jones and in (B) the same Viola-Jones model with the meta-learner classifying at the back-end. The green boxes indicate the

ground truth.

Table 7

The detection rate and false positive counts before and after stacking. In the after case, the named
method is used as the Meta-learner and the rest as the base-learner, whereas the before case is the

standalone version.

Model Det. rate before Det. rate after FP count FP count
stacking stacking before after
Decision tree 0.96 0.98 32 8
Naive Bayes 0.89 0.97 185 17
Bagging 0.95 0.99 12 5
Ada-Boost 0.98 0.99 9 6
Nearest neighbors 0.83 0.89 125 49
Random forest 0.95 0.98 41 7
Neural network 0.95 0.97 44 14
SVM 0.91 0.98 19 14

6.4. Viola-Jones

Viola-Jones employs cascading architecture. This allows the
maximum amount of processing power to spend only on windows
that are potentially rip channels. All negative windows are thrown
out in earlier layers. Viola-Jones is fairly quick to train and takes
less time than a deeper learner, such as a CNN. There are very
little parameters to specify, which is both beneficial and detri-
mental. Beneficial in that there is no time needed to grid search
for optimal parameters but detrimental in that Viola—Jones is less
customizable. Ada-Boost, the learning algorithm of Viola-Jones, is

also resistance to overfitting high variance datasets [ 19]. This is the
main reason Viola-Jones is the best out of the box classifier on the
rip channel dataset.

Viola-Jones is highly dependent on the Haar features. If a data
sample cannot be classified with them, then it makes Viola-Jones
ineffective. Also, the detection rate will continually drop as more
layers are added to the cascade which puts a limit on the number of
possible layers. Finally, Viola-Jones is not able to detect more than
one object in an image at once.
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Table 8

A comparison of Viola-Jones and the meta-classifier to reclassify the output of
Viola-Jones, to show that combination can help reduce the required layers in Viola-
Jones.

Layer Viola-Jones Meta Det. Viola-Jones Meta FP
Det. FP count count

17 1 1 300 39

28 0.88 0.85 15 8

35 0.82 0.82 10 5

40 0.76 0.76 10 5

6.5. Novel Haar features

The Haar features presented have a higher detection rate than
the Viola-Jones features. This is plausible since they are built from
the average rip channel just as the Viola-Jones Haar features are
built from the average face. It is interesting, however, that com-
bining the 2 sets results in the highest performance. This is most
likely due to the nature of the features. Each of these features is
of a different type. Each type contains many thousands of features.
This means giving Ada-boost a larger feature space allows it to find
some of each type that works better on the rip channel dataset than
the rest, regardless of which set they are from.

6.6. Meta-Learner

The meta-learner is added to the back of the Viola-Jones cas-
cade, giving it the same advantages and disadvantages. Addition-
ally, the meta-learner has the benefit of choosing a different final
classifier, which gives a bit more customization than Viola-Jones.
The meta-learner can achieve the same false positive count as a
cascade of Viola-Jones with a high number of layers, but without
needing the extra layers. This increases the overall detection rate
for the cascade but reduces the number of false positives.

The meta-learner is not as intuitive to use as the other models
and requires much more input than the other models. Since it
contains a high number of machine learning models, it also needs
many parameters defined for each model.

7. Conclusions

The rip channel dataset seems to favor use with the Viola-Jones
cascade and a meta-classifier back end. Ada-Boost and bagging
have the best performance as the meta-classifier because of the
way Haar features divide the dataset, just as a decision tree would.
The new Haar features, in combination with the original 5 Haar fea-
tures, are helpful for detection rip channels as they have improved
performance of the meta-learner more than the original 5 alone.
Support vector machines are not accurate enough to classify rip
channel images using averages of Haar features since they do not
have cascading architecture like Viola-Jones. Additional research
is needed to explore the potential of convolutional neural by fine-
tuning hyperparameters and through the use of pre-training and
checkpoints.

This research makes a notable contribution to expert intelli-
gent systems. It describes a detailed comparison of state-of-the-
art detection models, which will provide researchers with some
direction when choosing an algorithm for rip channel identifica-
tion. The study also presents meaningful features for extracting
rip channel data in future studies. The meta-classifier provides an
improvement to the state-of-the-art.

These results indicate three possible approaches for future
work. A large dataset could be developed for training convolutional
neural networks. Due to time constraints, proper validation of
hyperparameters could not be done nor making use of checkpoints
and network pretraining. Pretrained CNNs should be run on the

dataset and hyperparameters validated. The resulting studies will
generate a broader picture of CNN rip channel detection capabili-
ties. A model fine-tuned for this specific dataset will probably have
better results.

Max distance from the average rip channel image has one of
the highest false positive rates of any classifier, but PCA could be
useful as a method for feature reduction or rip channel recognition
in the future. The threshold could also be improved if more than
one dimension generates the max distance from the average rip
channel image.

The features presented are optimized for Ada-boost, which
provides a purpose for creating rip channel features better suited
for other machine learning algorithms in the future. The meta-
learner detector is acceptable for automatic rip channel detection,
which will allow for more rip channel studies to be conducted.

Supplementary material

The code, used in this research work, is freely available here
http://cs.uno.edu/~tamjid/Software/rip/code.zip and the datasets
are available here [20] (small dataset) and here [21] (large dataset).
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