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Abstract—To solve protein structure prediction (PSP) 

problems computationally, a plethora of template-based 

methods exist. However, there are very few ab initio models for 

PSP. Template-based modeling relies on the existing structures 

and therefore is not effective for non-homologous sequence-

based structure prediction. Thus, ab initio modeling is 

indispensable in such cases, even though it is a challenging 

optimization problem. To cope, we utilize an effective energy 

function (called 3DIGARS) and an advanced search algorithm 

(called KGA) based ab initio PSP, called 3DIGARS-PSP. To 

address critical search, the proposed genetic algorithm deploys 

two effective operators: angle rotation and segment 

translation. Further, propensities of torsion angle and 

secondary structure distribution have been utilized to guide the 

conformation search. Crucial features, such as sequence-

specific accessibility, hydrophobic-hydrophilic properties and 

torsion angles of protein residues are mined to formulate an 

optimized energy function, which is then combined with the 

advanced sampling algorithm to explore critical 

conformational space. Consequently, 3DIGARS-PSP 

performed well compared to the state-of-the-art method for a 

set of low TMscore models from CASP data. 

Keywords—ab initio, conformational search, energy 

function, genetic algorithm, protein structure prediction 

I. INTRODUCTION 

Protein tertiary structure prediction is one of the most 
challenging problems in molecular and structural biology. 
The goal of protein tertiary structure prediction is to 
accurately predict the spatial position of each atom in a 3D 
protein from only the sequence of amino acid residues. There 
exist experimental approaches for protein structure 
prediction (PSP), e.g., X-ray crystallography and nuclear 
magnetic resonance (NMR) but, these methods are far too 
slow and expensive for PSP. Moreover, there are 
computational approaches available for the PSP problem. 
The existing computational approaches can be categorized 
into two broad categories i) homology modeling or template-
based modeling and ii) ab initio or de novo modeling 
depending on whether similar proteins have already been 
experimentally solved. If proteins of the similar structure are 

recognized from the PDB [1] library, and the templates of the 
similar proteins are utilized to construct the target model, 
then this approach is called “homology modeling or 
template-based modeling” [2], [3], [4], [5], [6]. However, if 
protein templates are not available, the 3D structure is built 
from only the sequence of amino acid residues, and this 
approach is called “ab initio or de novo modeling” [7], [8], 
[9], [10], [11], [12], [13], [14]. 

The approach of homology modeling for PSP has 
achieved significant success, and the reason is the growing 
number of experimentally solved structures available in the 
PDB library. Nevertheless, this approach fails to produce an 
effective structure in the absence of similar proteins. This 
necessitates the development of the ab initio method for PSP. 
Typically, ab initio modeling comprises two essential 
components i) an accurate energy function and ii) effective 
conformational search. The energy function is used to 
evaluate the fitness of a given conformation and in general, 
distinguish the native structure from native-like decoys [15], 
[16], [17], [18], [19]. Likewise, a search algorithm is used to 
explore the protein’s conformational space by generating 
diverse and effective conformational samples.  

In this study, we develop a new algorithm, 3DIGARS-
PSP for ab initio protein structure prediction, with the focus 
on an elegant design of the energy function as well as the 
search algorithm. Our design of an energy function involves 
the generation of multiple 3D structural and sequence-
specific energetic features using multiple data sets of known 
proteins and two different reference states. Subsequently, the 
energetic features are ranked based on the Pearson 
Correlation Coefficient (PCC) and their optimal combination 
is obtained using the Genetic Algorithm (GA) [20], [21]. 
During optimization, the feature selection technique is used 
and only the features which helped improve the fitness of the 
GA are considered in the energy calculation of the structure. 
The optimized energy function is then used to evaluate the 
structures generated during the ab initio PSP process. 
Moreover, the design of the search process involves 
conformational change in the structure. We achieve the 
conformational change in the structure by applying the GA 
with novel mutation and crossover operators based on 
angular rotation and translation capabilities. This work is supported by the Louisiana Board of Regents through the 
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Further, we conducted a systematic test and analysis of 
the proposed 3DIGARS-PSP method on the target proteins 
from the Critical Assessment of Protein Structure Prediction 
8 (CASP8) [22]. We compare the models predicted by 
3DIGARS-PSP with the models predicted by one of the 
existing, top-performing PSP method, called Rosetta [23] in 
terms of the TM-score [24], [25] performance measure. 

II. METHOD 

A. Design of Optimal Energy Function 

The energy function plays a key role in evaluating the 
fitness of a given conformation and guiding the 
conformational search process by discriminating native-like 
structures from an ensemble of decoy structures, generated 
by conformational sampling during the ab initio PSP 
process. In this work, we designed an optimized energy 
function whose total energy is the sum of the 6 energy 
features as shown in (1). 
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where, energy features are computed from four different 
datasets (DS1, DS2, DS3, and DS4) which are described 
under “Datasets for Constructing Libraries for Energy 
Function” in Section D, Subsection 1 and two different 
reference states (RS1 and RS2) which are also described later 
in this section. Note that E3DIGARS and EASA_REGAd

3
p energy 

features were computed from DS1 and DS2 respectively, in 
our prior work [16], [15] and are extracted from 
3DIGARS3.0 [17] energy function for the purpose of this 
work. Furthermore, w1 = 1.98, w2 = 0.70, w3 = 1.16, w4 = 
0.03, and w5 = 0.25 are the weighting factors to balance the 
energy features, which were tuned using a GA based on a 
multi-objective fitness function as define in (2). 
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where, Avg_PCC is an average of the correlation 
coefficient for all the proteins in a dataset whereas, PCC is 
computed from the total energy and the structural accuracy 
(or TM-score) of the models in a protein, Avg_TMscore is an 
average of the TM-score of the low energy models, 
Avg_Native_Count is an average number of correctly 
selected native structures out of decoys and Avg_Zscore is an 
average of Z-scores (more negative Z-scores indicate that the 
energy function is able to clearly separate natives from 
decoys). The average for all of the components of the 
objective function is computed by dividing the features by 
the count of proteins present in the optimization dataset 
which are described under “Optimization Datasets for 
Energy Function” in Section D, Subsection 2. The GA 
parameters used for energy function optimization were set to 
i) maximum generation of 20,000; ii) population size of 200; 
iii) elite rate of 5%; iv) crossover rate of 90%; and v) 
mutation rate of 50%. Additionally, each of the weight 
variables, w1 through w5 were represented by an 11-bit 
binary (1/0) encoding system. 

Initially, we designed 41 energy features among which 
17 of the energy features were obtained by a sequence-

specific accessible surface area (ASA) energy calculation 
method, 20 of the energy features were obtained by a 
sequence-specific torsion angle (Phi and Psi) energy 
calculation method and 4 of the energy features were 
obtained from the 3DIGARS3.0 [17] energy function (1 
feature for the hydrophobic-hydrophilic energy term, 1 
feature for the sequence-specific ASA energy term where 
predicted ASA energy is computed using the REGAd3p tool 
[15] and 2 features for uPhi and uPsi energy terms). All other 
features except the features extracted from 3DIGARS3.0 
energy function were generated using the outputs from DSSP 
[26] and Spider2 [27] programs. DSSP program provides the 
real value assignment of the phi-psi angle pair and ASA from 
the structure of the protein. Whereas, Spider2 is a program 
which provides predicted phi-psi angle pair and ASA from 
the sequence of amino acids (fasta sequence). Among 41 
features, only 6 of the features were finally considered for 
total energy calculation and the rest of the features were 
ruled out using incremental feature selection technique. 

1) Sequence-specific ASA Energy Features 
The sequence-specific ASA energy feature, EASA is 

computed from the probability P(ΔASAi|AAi) of the 
prediction error of ASA (ΔASAi=ASAi

Real - ASAi
Pred) for a 

given amino acid type, AAi over all the ASA along the 
sequence. The sequence-specific ASA energy feature is 
mathematically represented as: 

 −=
i

iiASA AAASAPRTE )|(ln  (3) 

 where, R is the gas constant and T is the temperature. The 
ASAi

Real and ASAi
Pred terms in the prediction error 

calculation are obtained from DSSP [26] and Spider2 [27] 
for a given amino acid type, AAi. Two different probability 
functions P(ΔASAi|AAi) and P(ΔASAi|AAi,SSi) were 
obtained from four different datasets (DS1, DS2, DS3, and 
DS4, discussed under “Dataset Collection” in Section D, 
Subsection 1) and two different reference states. The 
reference state indicates the distribution of atoms in a protein 
system when the interaction is turned off. To test the 
influence of different reference states, we employed two 
different reference states i) based on conditional probability 
proposed by Samudrala and Moult [28] and ii) based on 
averaging technique proposed by Hoque et al. [29]. We 
generated 16 sequence-specific ASA based features by using 
Spider2 ASA predictor, two different probability functions, 
four different datasets, and two different reference states. 

2) Sequence-specific Torsion Angle Energy Features 

 The sequence-specific torsion angle energy feature, Eθ is 

computed from the probability P(Δθi|AAi, SSi) of the 

prediction angle error (Δθi=θi
Real - θi

Pred) for a given amino 

acid type, AAi and predicted secondary structure, SSi over all 
the torsion angles along the sequence. The sequence-specific 
torsion energy feature is mathematically represented as in 
(4). 

 −=
i

iii SSAAPRTE ),|(ln   (4) 

 where, R is the gas constant and T is the temperature. The 
θi

Real and θi
Pred terms in the prediction angle error calculation 

are obtained from DSSP and Spider2 programs for a given 
amino acid type, AAi and predicted secondary structure, SSi. 
The probability function P(Δθi|AAi,SSi) was obtained from 

four different datasets and two different reference states 
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similar to the ASA energy feature extraction as stated above. 
We generated 16 sequence-specific torsion angle (phi and 
psi) based features by using four different datasets and two 
different reference states. Two additional features based on 
uPhi and uPsi were reproduced using reference states based 
on the averaging technique proposed by Hoque et al. [29] 
whereas, these features were initially generated using a 
conditional probability based reference state in 3DIGARS3.0 
[17]. 

3) Sequence-specific ASA and Torsion Angle Energy 

Feature Computed from Amino Acid Triplets 
 The sequence-specific ASA energy feature from amino 
acid triplets, EASA_Triplet is computed from the probability 
P(ΔASAi|AAi-1-AAi-AAi+1) of the error of ASA (ΔASAi 
=ASAi

Real - ASAi
Pred) for a given amino acid type, AAi over 

all the ASA computed along the sequence. Similarly, the 
sequence-specific torsion angle energy feature for amino acid 
triplets, Eθ_Triplet are computed from the probability 
P(Δθi|AAi-1-AAi-AAi+1,SSi) of the prediction angle error 
(Δθi=θi

Real - θi
Pred) for a given amino acid type, AAi and 

predicted secondary structure, SSi over all the torsion angles 
computed along the sequence. The sequence-specific ASA 
energy feature for an amino acid triplet is mathematically 
represented as in (5). 

))(|(ln 11 −−−= +−
i

iiii AAAAAAASAPRTE  (5) 

 where, (AAi-1-AAi-AAi+1) represents an amino acid 
triplet at position ‘i’ in the sequence. Similarly, the sequence-
specific torsion angle energy feature for amino acid triplets is 
mathematically represented as in (6): 

)),(|(ln 11 −−−= +−
i

iiiii SSAAAAAAPRTE   (6) 

 where, (AAi-1-AAi-AAi+1) again represents an amino acid 
triplet at position ‘i’ in the sequence. By this approach, we 
generated 1 feature for sequence-specific ASA energy and 2 
features for sequence-specific torsion (1 for phi and 1 for psi) 
energies. 

B. Design of Conformational Search 

 Effective conformational search is another critical 
component of ab initio protein structure prediction, where 
the design of conformational change operators which can 
effectively sample the energy hyper-surface of the protein 
folding process, looking for the global minimum or the 
native fold of the protein is essential for improving the 
efficiency of search algorithms. Towards this goal, we 
designed a memory assisted GA which involves two types of 
conformational change operators i) angle rotation; and ii) 
segment translation. Our mutation operation involves phi or 
psi angle rotation and crossover operation involves segment 
translation followed by phi or psi angle rotation at the 
crossover point. Rotation of phi and psi angles involves 
rotation about an arbitrary axis. We consider this arbitrary 
axis to pass through the atoms that are involved in phi and 
psi angle formation. Torsion angle phi involves the backbone 
atoms C(O)n-1-Nn-C(α)n-C(O)n and psi involves the backbone 
atoms Nn-C(α)n-C(O)n-Nn+1. To perform phi angle rotation 
we follow steps described in Algorithm 1. In a like manner, 
psi angles are rotated by the similar steps described in 
Algorithm 1. However, the points p1 and p2 here instead 
represent atoms C(α)n and C(O)n, respectively. Moreover, to 
generate child structures of GA by crossing over parent 

structures, the segment translation technique is employed. A 
set of possible crossover points are selected based on the 
secondary structure information. All amino acid indexes 
except the amino acids belonging to the beta-sheet secondary 
structure type (either E or B) are considered as possible 
crossover points. This is because we want to preserve beta-
sheet regions in the structure from random changes during 
the crossover operation and perform more careful changes in 
the beta-sheet region while performing mutation operation. 

During the crossover process we generate four child 
structures from two-parent structures and a structure with the 
best fitness saved in the memory [20]. After selecting a 
crossover point, the first child structure is created by copying 
atoms starting at position one to the crossover point from 
first parent and the translated atoms starting at crossover 
point plus one to the last atom from the second parent. 
Similarly, second child structure is created by copying atoms 
starting at position one to the crossover point from first 
parent and the translated atoms starting at crossover point 
plus one to the last atom from the structure in memory. 
Alternatively, the third child structure is created by copying 
the translated atoms starting at position one to one less than 
the crossover point from second parent and the atoms 
starting at the crossover point to the last atom from first 
parent. Similarly, the fourth child structure is created by 
copying the translated atoms starting at position one to one 
less than the crossover point from the structure in memory 
and the atoms starting at the crossover point to the last atom 
from first parent. After segment translation is complete the 
torsion angles of the child structure at the crossover point are 
rotated back to the original torsion angles of parent 
structures. This is done to ensure that the secondary structure 
type before crossover and after crossover remains consistent. 
Furthermore, we update the fragments of the structure in the 
memory with the fragments that result in better fitness during 
the crossover process. This ensures that the segment that 
yields better fitness is preserved and used in the next round 
of crossover operation during the search process. The 
memory assisted GA presented in this work is an extension 
of KGA implemented specifically for the purpose of ab initio 
PSP. For the basics on KGA please refer [20] and for the 
detailed implementation of memory assisted GA please refer 
to the 3DIGARS-PSP Software code available freely online 
at http://cs.uno.edu/~tamjid/Software/ab_initio/v2/PSP.zip. 

C. Ab initio Protein Structure Prediction Method 

(3DIGARS-PSP) 

Protein structure in 3DIGARS-PSP is represented by 
backbone atoms N, Cα, C and O. We start by initializing 
some of the chromosomes of the GA population with the 
Cartesian coordinates of the backbone atoms of the models 

Algorithm 1: Phi Angle Rotation 

1.  
Select an axis passing through two points p1 and p2 (atoms Nn 
and C(α)n). 

2. Translate point p1 (atom Nn) to the origin. 

3. Rotate point p2 (atom C(α)n) onto the Z-axis. 

4. 
Rotate the segment of the structure after point p2 around the Z-
axis. 

5. 
Rotate the axis passing through two points p1 and p2 to the 
original orientation. 

6. Translate the structure to the original position. 

 

Authorized licensed use limited to: University of New Orleans. Downloaded on March 12,2022 at 02:16:16 UTC from IEEE Xplore.  Restrictions apply. 



obtained from Rosetta [23] server. The rest of the 
chromosomes are initialized by single point torsion angle 
changes (rotation). To change the phi or psi angles 
effectively, we collected the frequency of occurrence of 20 
different amino acids with different phi-psi torsion angle 
pairs. Both phi and psi angles are divided into 120 bins with 
an interval of 3 degrees, summarized from the 4,332 high-
resolution experimental structures. An example that shows 
how the frequency of occurrence is computed is as follows: 
if amino acid “ALA” has phi angle of -178 degrees and psi 
angle of 179 degrees, the frequency count for amino acid 
“ALA” at psi index zero and phi index zero will be increased 
by one. The frequency distribution obtained for each amino 
acid is further categorized into zones by looking at the 
cluster of the frequency values. To update the phi or psi 
angle of a certain amino acid type (aa_type) first, the torsion 
angle type (tor_type) is selected randomly. Next, the zone 
index (zone_ind) belonging to aa_type is selected randomly. 
Then, the roulette wheel selection method is applied to select 
the most probable torsion angles (namely, pPhi or pPsi) 
belonging to the zone_ind. Later, if tor_type = phi angle, we 
select a random phi (say, rPhi) between pPhi-3 and pPhi and 
rotate the current phi angle to achieve rPhi angle. Whereas, if 
tor_type = psi angle, we select a random psi (rPsi) between 
pPsi and pPsi+3 and rotate the current psi angle to achieve 
rPsi angle. 

The changes of the torsion angles are also guided by the 
secondary structure (SS) types of the amino acids which are 
mined from the 4,332 high-resolution experimental 
structures. To mine the SS types, first, we run the DSSP [26] 
program on the experimental structures to obtain the phi-psi 
angle pair and the SS type for each of the amino acids in 
each of the proteins. DSSP output gives eight different SS 
types (E, B, H, G, I, T, S, and U) which are broadly 
categorized into four different SS types (H, E, T, and U). The 
SS types “E and B” are considered as “E”, “H, G and I” are 
considered as “H”, “T and S” are considered as “T” and a 
blank is considered as “U or undefined”. Using phi-psi angle 
pair and SS types, we obtain the index in our SS frequency 
table and increase the frequency count of the cell in the 
frequency table by one. E.g. if amino acid “ALA” has a phi 
angle of -178 degrees, a psi angle of 179 degrees, and the SS 
type as “H” the frequency count for amino acid “ALA” at psi 
index zero, phi index zero and SS index zero is increased by 
one. Later, the SS type which has the largest frequency count 
is assigned to the given amino acid having a certain phi-psi 
angle. Additionally, we collect the phi-psi angle pairs 
belonging to the H and E secondary structure types and 
group them into helix and beta groups. We utilize the phi-psi 
angle pairs belonging to the helix or sheet group to update 
the phi or psi angles that result in the clash within the 
structure. 

Moreover, the random change of phi or psi angles within 
the structure could produce low-resolution structures. In 
other words, random changes could destroy the conserved 
beta-sheet regions of the structure. To overcome this issue, 
we apply a beta smoothing technique. An amino acid (AAi) 
is considered to satisfy the beta condition if any of the 
following conditions are satisfied: i) AAi-1 and AAi+1 both 
have SS type “E”; ii) AAi-1 and AAi-2 both have SS type “E”; 
and iii) AAi+1 and AAi+2 both have SS type “E”. AAi is the 
amino acid that is selected for change. To change the phi or 
psi angle of the AAi, we follow the steps shown in Algorithm 
2. Furthermore, changes in phi or psi angles could result in a 

clash between atoms within the structure. To prevent clashes, 
we check the distance between all possible Cα atom pairs 
within the structure and discard the change if Cα-Cα distance 
is less than 3.6 Å. If the change in phi or psi angles of the 
current residue results in a clash then a new residue position 
is selected for the change. 

In our implementation, before applying the energy 
function to evaluate the fitness of the structure, we obtain the 
full atomic model from the backbone model using Oscar-star 
[30]. The flowchart of the 3DIGARS-PSP method is shown 
in Fig. 1.  

For effective conformational search, the parameters of 
the GA were configured as: i) maximum generation of 300; 
ii) population size of 100; iii) elite rate of 5%; iv) crossover 
rate of 70%; and v) mutation rate of 60%. 

D. Data Collection 

This section first discusses the dataset used for 
constructing libraries and the optimization of the energy 
function. Then, it discusses the test dataset collected for 
testing of our ab initio method. 

1) Datasets for Constructing Libraries for Energy 

Function 
We collected three different sets of data and created the 

fourth set by combining the three, to construct energy score 
libraries and obtain multiple features. 

a) Datasets1 (DS1) 

The experimental structures (proteins) in this set were 
obtained from the PDB server. The proteins with unknown 
residues as well as with missing residues anywhere except 
for five terminal residues on either side were rejected to 
avoid any noise in the data. The final dataset consists of 
4,332 proteins with resolution ≤ 2.5Å, single-chain proteins, 
and a sequence identity cutoff of 100%. This dataset was 
published previously and used for constructing energy score 

Algorithm 2: Change in Phi or Psi Angles 
Constrained by Beta Condition 

1.  Check if AAi belongs to SS type “E”. 

2. Check if AAi satisfies Beta Condition 

 

• If TRUE 

• Accept the change in Phi or Psi angle if new Phi-Psi 
angle pair belongs to SS type “E”. 

• If new Phi-Psi angle pair belongs to SS type other 
than “E”. 

• Update the angle under consideration (Phi or 
Psi) with the most probable torsion angles 
from the beta group based on the roulette 
wheel selection mechanism. 

• If FALSE 

• If new Phi-Psi angle pair belongs to SS type “H” 

• Update the angle under consideration (Phi or Psi) 
with the most probable torsion angles from the 
helix group based on the roulette wheel selection 
mechanism. 

• If new Phi-Psi angle pair belongs to SS type other 
than “H” 

• The rotation of Phi or Psi angle is performed to 
achieve the new Phi-Psi angle pairs. 
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libraries in 3DIGARS [16] energy function. In this work, we 
discarded 8 of the proteins which consisted of only alpha 
carbon atoms as the DSSP [26] program requires the full 
atomic structure to compute phi and psi angles and the SS 
type for each amino acid. The resulting dataset consists of 
4,324 proteins, which were used to generate the energy 
function features in this work.  

b) Datasets2 (DS2)  

DS2 was prepared from the PDB and consists of 1299 
proteins after data purification. Initially, 2,793 proteins (both 
single and multiple chains) were collected from the PDB 
with the following data collection parameters: i) solved by 
X-ray crystallography; ii) resolution ≤ 1.5Å; iii) residue 
length ≥ 40; and iv) 30% sequence identity cutoff. Then, the 
proteins were refined to keep only those with a 25% 
sequence identity cutoff. Next, the proteins with unknown 
residues and missing Cartesian coordinates were discarded to 
avoid any noise in the data. This dataset is the same as the 
dataset used to generate the sequence-specific ASA based 
energy feature in the 3DIGARS2.0 [15] energy function. 

c) Datasets3 (DS3) 

DS3 consists of 2,479 high-resolution (resolution lower 
than 3Å), non-redundant (sequence identity < 25%) proteins 
taken from the protein sequence culling server, PISCES [31]. 
The proteins in this set have 500 or fewer amino acid 
residues. This dataset is the same as the dataset implemented 
in training and testing of the SPINE X [32] server. 

d) Datasets4 (DS4) 

DS4 is a combination of DS1, DS2, and DS3. 

2) Optimization Datasets for Energy Function 
To optimize the weights of the energy function, we 

collected the structures submitted in four Critical Assessment 
of Protein Structure Prediction’s (CASP); CASP8 [22], 
CASP9 [33], CASP10 [34] and CASP11 [35]. Furthermore, 
the native structures for the proteins were obtained from 
Zhang Lab [36], [37], [38], [39]. The native structures were 
only used for TMscore based structure assessment of our ab 
initio method. We carried out the following two-step 
refinement to ensure quality optimization set collection: i) 
proteins that have missing residues were removed from the 
optimization set; ii) if the models contain an additional 
number of residues at the beginning and end of the structure 
compared to the native structure, the additional residues at 
the beginning and end were chopped off from the models. 
After filtration, the CASP8 set consists of 73 proteins, 
CASP9 set consists of 82 proteins, CASP10 set consists of 
67 proteins and CASP11 set consists of 59 proteins. 
Furthermore, CASP8, CASP9 and CASP10 consists of 300 
models per protein and CASP11 consists of 200 models per 
proteins on average. 

3) Test Datasets for Ab initio PSP (TAI16) 
To assess the robustness of the 3DIGARS-PSP method, 

we collected the models with TMscore < 0.5 submitted by 
the Rosetta server in the CASP8 challenge. We found that, 
among 73 proteins, 16 of the proteins have TMscores < 0.5 
for the models submitted by Rosetta. We name this 
benchmark set of 16 proteins as TAI16. We compared our 
method with the Rosetta method based on these 16 proteins 
as we believe that they represent the true ab initio predictions 
by the Rosetta method. 

 
 Fig. 1. Flowchart of the 3DIGARS-PSP ab initio prediction. 
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III. RESULTS 

Here we discuss the robustness of our approach based on 
obtained results and analysis. 

1) Results of the Energy Function Optimization 
After ranking the features based on average PCC between 

the total energy and the model’s structural accuracy 
(TMscore), we sequentially added and ruled out the features 
based on their importance in improving the objective fitness 
during energy function optimization. In Table 1 and Table 2, 
we show the improvements we achieved in our energy  

function based on the components of the objective 
function: i) Average PCC; ii) Average TMscore; iii) Native 
Count; and iv) Average Zscore. The “Average PCC” column 
of Table 1 and Table 2 shows that there is a slight decrement 
in the average PCC. Nonetheless, from “Native Counts” 
column of Table 1 and Table 2, we can clearly see that the 
optimized energy function with 6 energy features results in 
111.39% improvement and is able to select more natives 
from the dataset of decoy structures (CASP8, CASP9, 
CASP10, and CASP11), which is the primary objective of 
the energy function. Furthermore, from the “Average 
TMscore” column of Table 1 and Table 2, it is evident that 
the improved energy function can select the best models 
from an ensemble of decoys based on the average TM-score 
with a percentage improvement of 2.08%. Similarly, based 
on the “Average Zscore”, the optimized energy function is 
improved by 60.44%. This shows the significance of our 
multi-objective optimization technique in improving the 
accuracy of the energy function. 

2) Results of the 3DIGARS-PSP Method 
We evaluated the performance of the 3DIGARS-PSP 

method on the challenging benchmark set TAI16, which 
consists of 16 proteins. Each of the proteins in TAI16 
consists of low TMscore models (TMscore < 0.5) submitted 
by the Rosetta server in CASP8. In Table 3, we compare the 
performance of the 3DIGARS-PSP method with Rosetta 
based on the TM-score (structure assessment criteria). Based 
on the average TM-score of the first model out of the five, in 
set TAI16 submitted by Rosetta, the average TM-score of the 
3DIGARS-PSP models is 3.11% better than Rosetta (see 
Table 3, column “Rosetta (First Model)”). Moreover, based 
on the average of the average TM-score of 5 models, in 
TAI16 set submitted by Rosetta, 3DIGARS-PSP achieves a 
5.56% improvement over Rosetta (see Table 3, column 
“Rosetta (Average of 5 Models)”). From Table 3 it is evident 
that 3DIGARS-PSP provides superior performance over 
Rosetta. 

IV. CONCLUSIONS 

We have proposed a new and advanced algorithm, 
3DIGARS-PSP, for ab initio protein structure prediction. In 
3DIGARS-PSP, the backbone atoms (N, Cα, C and O) in a 
Cartesian coordinate system define protein conformations. 
Representing protein conformation by only backbone atoms 
is our first step to reduce the large search space. In a 
subsequent step, we reduce the search space by deploying a 
memory assisted GA which involves two types of 
conformational change operators i) angle rotation; and ii) 
segment translation. Moreover, we perform a torsion angle 
and secondary structure distribution guided changes instead 
of random sampling to generate lower energy conformations. 

We show that our optimized energy function consisting 
of 6 energy features, computed from sequence-specific 
accessibility, hydrophobic-hydrophilic properties, and 
torsion angles is able to select a higher number of native 
structures from the CASP decoy sets. Also, when tested on 
the CASP decoy set, our energy function is found to select 
the low energy conformation decoys more accurately based 
on TM-score and Z-scores. 

TABLE I.  VALUES OF OBJECTIVE FUNCTION COMPONENT WHILE 

USING THE HIGHEST RANKED FEATURE 

Dataset 
Objective Function Components 

Average 

PCC 

Average 

TMscore 

Native 

Counts 

Average 

Zscore 

CASP8 (73)a
 -0.7003 0.6628 23 -0.9736 

CASP9 (82) a -0.7049 0.6305 15 -0.8083 

CASP10 (67) a -0.6654 0.6614 24 -1.3768 

CASP11 (59) a -0.6450 0.5626 17 -1.1600 

Average -0.6789 0.6293 19.75 -1.0797 

a. Total number of proteins available in corresponding dataset. 

TABLE II.  VALUES OF OBJECTIVE FUNCTION COMPONENT WHILE 

USING SIX OF THE FINAL ENERGY FEATURES 

Dataset 
Objective Function Components 

Average 

PCC 

Average 

TMscore 

Native 

Counts 

Average 

Zscore 

CASP8 

(73)a
 

-0.7189 0.6735 44 -1.6242 

CASP9 

(82) a 
-0.6888 0.6482 46 -1.4988 

CASP10 
(67) a 

-0.6008 0.6739 43 -2.0135 

CASP11 

(59) a 
-0.6062 0.5740 34 -1.7927 

Average 
-0.6537 

(-3.71%)b 

0.6424 

(2.08%) b 

41.75 

(111.39%) b 

-1.7323 

(60.44%) b 

a. Total number of proteins available in corresponding dataset. 
b. Percentage of improvement while using six best energy features 

TABLE III.  PERFORMANCE OF 3DIGARS-PSP ROSETTA METHODS 

ON CASP8 LOW TMSCORE MODELS 

Protein ID 
TMscores 

3DIGARS-PSP  
Rosetta (Average 

of 5 Models) 

Rosetta (First 

Model) 

T0397 0.3934 0.35636 0.3566 

T0409 0.4523 0.40528 0.4407 

T0460 0.3017 0.26156 0.2624 

T0466 0.2239 0.26246 0.3259 

T0467 0.2912 0.27222 0.3031 

T0468 0.236 0.20982 0.2529 

T0474 0.4435 0.4839 0.5029 

T0476 0.3402 0.2932 0.2793 

T0478 0.2467 0.2436 0.2461 

T0480 0.2736 0.2303 0.2077 

T0482 0.3663 0.36222 0.3516 

T0484 0.2651 0.24994 0.2527 

T0495 0.4017 0.40656 0.4091 

T0496 0.3179 0.25928 0.2158 

T0498 0.2376 0.2387 0.2387 

T0504 0.2738 0.24766 0.262 

Average 0.316556 
0.298941 

(5.56%) a 

0.306719 

(3.11%) a 

a. Percentage of improvement of 3DIGARS-PSP over Rosetta based on average TMscore of 5 

models and average of TMscore of the first models respectively. 
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Combining improved sampling and an optimized energy 
function attains improvement over Rosetta template-based 
method, based on the test performed on the low TMscore 
models, selected from CASP8 dataset (TAI16). Our method 
showed 5.56% and 3.11% improvement over Rosetta based 
on the average of the average TM-scores of the top 5 models 
and average of the first models, on the benchmark set TAI16, 
respectively. Despite notable improvement in this work, 
continuous efforts in both aspects of energy function 
development and conformational search improvement are 
still necessary to improve the accuracy of the ab initio 
protein structure prediction. 
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