
Int. J. Bio-Inspired Computation, Vol. 9, No. 3, 2017 129

Copyright © 2017 Inderscience Enterprises Ltd.

Genetic algorithm-based improved sampling for
protein structure prediction

Md Tamjidul Hoque* and Sumaiya Iqbal
Computer Science,
University of New Orleans,
New Orleans, Louisiana, USA
Email: thoque@uno.edu
Email: siqbal1@uno.edu
*Corresponding author

Abstract: The quest for efficient sampling algorithms continues to be a demanding research
topic due to their wide spread applications. Here, we present an extension of genetic algorithm
(GA) to incorporate improved sampling capacity. We develop a fast-navigating genetic algorithm
(FNGA) using associated-memory (AM)-based crossover operation which gives more trials with
best chromosomes subpart and helps to navigate faster. To mitigate the increased similarity
within population, the twin removal genetic algorithm or TRGA is applied. The optimally
diverge chromosomes generated by TRGA can introduce potential subpart to enhance the
performance of FNGA further. Thus, we combine FNGA and TRGA and named the
combination, kite genetic algorithm (KGA). The proposed FNGA and KGA are empirically
tested with benchmark functions and the results are found promising. We further employ KGA in
the conformational search for the fragment-free protein tertiary structure prediction. The results
of ab initio protein structure modelling show that the sampling performance of KGA is
competitive.

Keywords: genetic algorithms; fast-navigation; twin removal; associated-memory; protein
structure prediction; hard optimisation; ab initio prediction; crossover; mutation; chromosome
correlation factor.

Reference to this paper should be made as follows: Hoque, M.T. and Iqbal, S. (2017) ‘Genetic
algorithm-based improved sampling for protein structure prediction’, Int. J. Bio-Inspired
Computation, Vol. 9, No. 3, pp.129–141.

Biographical notes: Md Tamjidul Hoque received his PhD in Information Technology from the
Monash University, Australia in 2008. He received his MSc and BSc in Computer Science and
Engineering from the Bangladesh University of Engineering and Technology (BUET) in 2002
and 1998, respectively. He is currently an Assistant Professor with the Computer Science
Department, University of New Orleans (UNO), New Orleans, LA, USA. He is also the Director
of the Bioinformatics and Machine Learning Lab at the UNO.

Sumaiya Iqbal is a Graduate Assistant at the University of New Orleans (UNO) and a member of
the Bioinformatics and Machine Learning Lab at the UNO. She is an Assistant Professor,
Computer Science and Engineering Department, Bangladesh University of Engineering and
Technology.

1 Introduction

Given the amino acid sequence of a protein, the task of
protein structure prediction (PSP) is to determine its
three-dimensional native structure. Anfinsen’s (1973)
thermodynamic hypothesis informs that the protein structure
can be predicted using the information encoded within the
amino acid sequence of that protein. PSP matters because
the structure of the protein determines its function and
proteins systematise the cellular functions in an organism.
Once we know sequence to function relationship, we can
determine what to do at the molecular level for our health
and wellbeing. Protein can fold into astronomical number of
possible structures from its amino acid sequence

considering admissible degree of freedom of the
constituents. Thus, the search of native conformation within
the PSP task is a hard optimisation problem. However, the
Levinthal (1968) paradox shows the dual property of protein
that it folds in a spontaneous manner in nature. Therefore, it
is possible to guide the PSP task by well-defined
computational approaches.

There are mainly three computational approaches for
predicting structure of protein: comparative modelling,
threading or fold recognition, and ab initio prediction.
The comparative modelling (also known as homology
modelling) requires one or more experimental tertiary
structures of homologous proteins to be present. Protein fold
recognition is a useful alternative to understand structures of

130 M.T. Hoque and S. Iqbal

proteins that do not have their homologous protein’s
structures; however still requires proteins of known
structure having similar folds. A wide range of machine
learning algorithm-based predictors have been developed in
the last two decades to predict protein folds (Sharma et al.,
2013; Paliwal et al., 2014; Lyons et al., 2014, 2015) and
protein structural classes (Dehzangi et al., 2013a, 2013b,
Saini et al., 2014; Islam et al., 2015) using features such as
secondary structure profile, PSSM profile, bigram and
trigram probabilities, HMM profile, etc.

However, the template free ab initio approach for PSP
problem is the most exciting one, it is yet very challenging
as it does not use previously solved structures. The ab initio
prediction of protein structure can provide us the insight of
how the three-dimensional structure of protein is attained as
it transforms sequence into structure from scratch. To solve
PSP, we need to have an efficient conformational sampling
algorithm along with an accurate energy function (Cooper
et al., 2010; Das and Baker, 2008; Iqbal et al., 2015b). For a
simplified model-based PSP problem, we have seen that
even if we have a well-defined fitness or energy function to
recognise the final goal, there is no efficient conformational
sampling algorithm that can conveniently get the known
final answer starting from a random conformation (Hoque
et al., 2005). In this paper, we are especially motivated to
provide GA-based improved sampling algorithm for PSP
problem.

Genetic algorithm (GA), first proposed by Holland
(1992, 2001), is an adaptive heuristic search and
optimisation algorithm premised on the Darwin’s principle
of natural selection and genetics. A population of
chromosomes (i.e., the solutions), proportionate selection
procedure and the two operators: crossover and mutation are
the constituents of a simple genetic algorithm (SGA). GA’s
crossover operation is regarded as its heart. Crossover has
also been utilised within other bio-inspired optimisation
algorithms as well to enhance their performances
(Iqbal et al., 2015a; Milan, 2013). We have designed an
associated-memory (AM)-based crossover within SGA to
prioritise the crossover-participated better chromosome
fragments. This crossover encourages the selection of fitter
fragments stored in the memory. We named this alternate
SGA a fast-navigating genetic algorithm (FNGA), as it
converges faster.

Now, contrary to the diversity issues, our proposed
FNGA approach would increase the similarity within
population adversely. Therefore, after FNGA’s role per
generation, we immediately applied twin removal-based
genetic algorithm (TRGA), by which similar chromosomes
are replaced by new random chromosomes. TRGA
approach can introduce potential subpart or sub-solution to
enhance the performance of FNGA. And, the improved seed
from FNGA can allow TRGA to enhance performance
simultaneously when these two approaches are combined in
the aforementioned way. We named the combination of
FNGA and TRGA, as kite genetic algorithm or, KGA in
short, as it resembles the characteristics of the bird kite in
hunting down fast as well as searching thoroughly. KGA

has been empirically found effective for a wide range of
benchmark test functions. Moreover, KGA is proved to
be a generic sampling algorithm while compared with
state-of-the-art algorithms such as saw-tooth genetic
algorithm (STGA) (Koumousis and Katsaras, 2006) and GA
(named YGA) for ab initio PSP solution (Faraggi et al.,
2009).

Figure 1 (a) Structural organisation of the two different sets of
AM, where n indicates the length of the chromosome*
(b) AM-crossover: a single point crossover operation
involving AM (see online version for colours)

Note: *The structural organisation of the memory is

based on single point crosser operation.

2 Fast-navigating genetic algorithm

The concept of the crossover is virtuous: parents after
mating can produce better offspring. The idea for designing
FNGA comes from the fact that there is no hard criteria to
precisely select better parents for crossover as the selection
procedure works probabilistically. Thus, while it is

 Genetic algorithm-based improved sampling for protein structure prediction 131

beneficial to converge faster rather than exploring further,
there is no mechanism within SGA to provide more chances
to utilise the best available parts of chromosomes. We see
the opportunity to allow the available best part, lengthen
from minimum to maximum possible fragments, actively
rather than relying on selection procedure. That is,
exploring more with the best available subpart of the
chromosome would help navigate faster as well as accurate.

To apply the ideas, we introduce two AM sets: one
upper triangular and one lower triangular in shape (see
Figure 1), based on single point crossover operation.
Crossover operation is assumed to be applied at a higher
rate (Koumousis and Katsaras, 2006), primarily for the
intensification of a potential search area. We modify the
crossover operation with the help of AM to navigate faster.
We termed the modified crossover as ‘AM-crossover’ (see
Figure 2). The number of the individual memory in each
AM is equal to (length-1) of the chromosome. The AM
stores the crossover-position-based participating best
chromosome’s subpart for the passing generations. In each
crossover, we check that whether the subpart from AM
generates better result than that of 2nd parent, in
combination with 1st parent’s subpart. The increased
exploration of the best subpart stored in AM provides better
trial for navigating faster as well as accurate solution
without giving much chance to lose the better seed(s).

Figure 2 Algorithm for AM-crossover procedure

Procedure: AM-Crossover (Ca, Cb, i);
RETURN off-spring: (Cc, Cd)
Input: Parent chromosomes: (Ca, Cb); Crossover point: i
Output: Offspring chromosomes = (Cc, Cd)
// Ck = kth chromosome in the population,
// ‘n’= (fixed) length of a chromosome, indicates the
 number of loci,
// ‘i’ = immediate lower-indexed-locus of the crossover
 position, where 1< i < n, and ‘j’ = ‘i’+1,

BEGIN
 IF fitness (Ca [1 to i] + Cb [j to n]) > fitness (Ca [1 to i] + AMLT(i))
THEN
 AMLT(i) = Cb [j to n]; Cc = Ca [1 to i] + Cb [j to n];
 ELSE
 Cc = Ca [1 to i] + AMLT(i);
 END IF

 IF fitness (Cb [1 to i] + Ca [j to n]) >
 fitness (AMUT(i)+ Ca [j to n]) THEN
 AMUT(i) = Cb [1 to i]; Cd = Cb [1 to i] + Ca [j to n];
 ELSE
 Cd = AMUT(i)+ Ca [j to n];
 END IF
END

3 Twin removal genetic algorithm

It has been conclusively shown that a twin removal-based
genetic algorithm (TRGA) affords considerably robust
performance, especially for the hard optimisation problem
such as ab initio PSP problem using lattice models as well
as real all-atom model (Higgs et al., 2012; Hoque et al.,

2011; Rashid et al., 2015, 2016). GA crossover and
mutation operations by incorporating twin removal can
avoid becoming ineffectual by replacing closely similar
chromosomes with optimal number of random
conformations (Hoque et al., 2007). Here, we investigate the
twin removal approach to formulate a superior algorithm
further. The twin removal algorithm is illustrated in
Figure 3. The application of twin removal strategy is
controlled by CCF or, chromosome correlation factor
(quantification is indicated by r here) which introduces the
level of similarities while comparing chromosomes. An
optimal value of r ensures the robust performance of GA.
The CCF (r), defines the degree of similarity between
chromosomes from 0% (when, r = 0) to 100% (when,
r = 1). Hence, a value of r = 75% implies that the similarity
is 75% between two chromosomes. It has already been
studied that TRGA performs the best when r is kept equal to
80% (Higgs et al., 2012; Hoque et al., 2011). Therefore, we
also use the value of r = 0.8 in this study.

Figure 3 Twin removal algorithm (TRGA)

Procedure: Twin Removal (Popz, n);
RETURN population
Input: Population size = Popz,
 Chromosome (C) length = n.
Output: Population with admissible level of twin
 similarity.
// Ci and Cj, where .ji ≠
// RetSimilarity (i, j) returns similarity of Ci and Cj in %.

BEGIN
 FOR i = 1 to)1(−zPop DO

 IF Ci.MarkDeleted = False THEN
 FOR j = i+1 to zPop DO
 IF RetSimilarity(i, j)≥ r% THEN
 IF () ()ji CC Fitness Fitness < THEN

 Swap (Ci , Cj)
 END IF
 C(j).MarkDeleted = True

 END IF
 END FOR
 END IF
 END FOR
 END.

4 Kite genetic algorithm

The exploitation power of FNGA and exploration capacity
of TRGA instigates us to combine them to form a novel GA
which can perform effectively for a range of problems. We
named the combination ‘kite-GA’ or ‘KGA’ in short as its
ultimate form resembles the characteristic of bird kite in
hunting down fast as well as searching thoroughly. The
mechanisms of KGA are intended to enable effective search
in a small as well as in a large neighbourhood of the search
landscape.

132 M.T. Hoque and S. Iqbal

Figure 4 Complete overview of KGA algorithm

Notes: The three GA operators, AM-crossover, twin

removal and mutation are highlighted in bold. The
building blocks of FNGA and TRGA are further
expanded within blue and green boxes, respectively.

However, the ultimate form of KGA is determined
empirically comparing the performance of two different
combinations, termed:

1 Switching-mode (Koumousis and Katsaras, 2006):
FNGA is regularly executed in each generation within
crossover and after every five generations TRGA is
executed and FNGA is not executed at the same go.

2 Mixing-mode (Yao et al., 1999): FNGA and TRGA are
executed in the same generation.

However, FNGA executed first within crossover to provide
more trial to potential subpart but increases the similarities
within the population and TRGA removes and maintains
optimal similarities after performing all the operations
such as crossover and mutation. From preliminary
experiments on benchmark functions, we found that the
performances of the two modes were close (Hoque, 2015).
However, the mixing-mode was relatively superior
over the switching-mode as in this mode every passing
generations have balanced exploration and exploitation.
Therefore, we integrated the mixing-mode within our final
KGA algorithm. Finally, KGA applies three operators
sequentially in every generation to generate the new
population which are AM-based single point crossover,

single point mutation and twin removal. The full flowchart
of KGA is shown in Figure 4.

5 Simulation studies

In this section, we analyse the performances of proposed
GA variations in two levels:

1 we use widely adopted benchmark test functions to
verify the proposed GA’s strength of searching for the
global optima within the function’s complex landscapes

2 we stress the algorithm’s sampling capacity to a limit
by applying them in finding the optimal protein
structure from astronomical conformational search
space.

We perform the later experiment for both discrete or lattice
model (Park and Levitt, 1995) and real (Rohl et al., 2004)
PSP problem.

5.1 Sampling performance on benchmark functions

We collected 14 different benchmark functions from the
base functions used in the latest CEC competition (Liang
et al., 2013). These comprehensive set includes test
functions with several challenging characteristics, like
separability, modality, and dimensionality. Seven functions
of the set have two variables, yet difficult to optimise due to
their complex landscapes and the rest are scaled to include
higher number of dimensions. In this study, we set the
number of variables equal to 30 for the scalable functions.
The test functions are listed in Table 1. It shows the
function’s name, formula, global minima and search bounds
of the landscape. We used sequence of binary bits (‘0’ or,
‘1’) to encode values of variables within the chromosomes
of GA population. Each binary string corresponding to a
variable has three parts: sign, decimal and fractional. The bit
length of each variable differs for different functions due to
different coverage of ranges within the search spaces shown
in Table 1.

The GA parameter values for all the experiments in this
study are: population size, Popz = 200; rate of crossover,
pc = 80%; rate of mutation, pm = 5%; elite rate, pe = 5%;
maximum number of generations = 2,000. Moreover,
roulette wheel approach is applied for the probabilistic
selection of parents for the crossover operation. The display
of results in Tables 2 and 3 include the best, average,
standard deviation (S.D.) of the fitness values found from
30 independent iterations. We also report the average
number of generations (avg. gen.) required to converge in
all 30 iterations.

Table 2 displays the results for two-dimensional
problems. The Easom, Leon, Rosenbrock and Zettl
functions are unimodal, however, complex as their variables
are interrelated (inseparable). Moreover, the first three of
these functions have challenging landscapes with global
minima inside a narrow space of the full landscape.
Performances of KGA for Easom and Zettl functions are

 Genetic algorithm-based improved sampling for protein structure prediction 133

effective. On the other hand, TRGA achieved minimum
average finesses for Leon and Rosenbrock functions,
however, KGA is competitive in both of the cases. The
carrom table, egg holder and Schaffer’s F2 functions have
additional complexity of having highly multimodal

landscapes. For all the three functions, KGA outperformed
the other variations. For carrom table and egg holder
functions, only KGA could discover the global minima in
every iterations

Table 1 Description of benchmark test function

No. Function
name Function definition Global

minima
Bounds (point of

minima)
Bit length of a

variable Properties

Number of variables, N = 2

1 Easom –cos(x1)cos(x2)exp(–(x1 – π)2 – (x2 – π)2) –1 [–100, 100]
27 (1 + 7 + 19)

Inseparable

(π, π) Unimodal

2 Carrom table () ()
2 2
1 2 2 2

1 2
1 exp 2 1 cos cos
30

x x
x x

π

⎛ ⎞+
⎜ ⎟− −
⎝ ⎠

 –24.1568
[10, 10]

40 (1 + 4 + 35)
Inseparable

(± 9.6461, ± 9.6461) Multimodal

3 Egg holder
()

()

1
2 2

1 1 2

47 sin 47
2

sin 47

xx x

x x x

− + + +

− − +

 –959.6407

[–512, 512]

36 (1 + 10 + 25)

Inseparable

(512, 404.2319) Multimodal

4 Leon () ()2 22
2 11100 1x x x− + − 0

[–1.2, 1.2]
18 (1 + 1 + 18)

Inseparable

(1, 1) Unimodal

5 Rosenbrock () ()2 22
2 11100 1x x x− + − 0

[–2.049, 2.048]
23 (1 + 2 + 20)

Inseparable

(1, 1) Unimodal

6 Schaffer’s F2
()

()

2 2 2
1 2

22 2
1 2

sin 0.5
0.5

1 0.001

x x

x x

− −
+
⎡ ⎤+ +⎣ ⎦

 0
[–100, 100]

27 (1 + 7 + 19)
Inseparable

(0, 0) Multimodal

7 Zettl ()22 2
1 11 2

1 2
4

x x x x+ − + –0.00379
[–5, 5]

29 (1 + 3 + 25)
Inseparable

(–0.0299, 0) Unimodal

Number of variables, N = 30

8 Sphere 2
1

N
i

i
x

=∑ 0
[–100, 100]

21 (1 + 7 + 13)
Separable

(0, …, 0) Unimodal

9 Cigar 2 6 2
1 1

10
N

i
i

x x
=

+ ∑ 0
[–100, 100]

20 (1 + 7 + 12)
Separable

(0, …, 0) Unimodal

10 Ellipsoid 2
1 1

N i
j

i j
x

= =∑ ∑ 0
[–100, 100]

20 (1 + 7 + 12)
Separable

(0, …, 0) Unimodal

11 Griewank
2

1 1

cos 1
4000

NN
iiN

i i

x x
i= =

⎛ ⎞− +⎜ ⎟
⎝ ⎠∑ ∏ 0

[–600, 600]
27 (1 + 10 + 16)

Inseparable

(0, …, 0) Multimodal

12 Levy
() () ()()

() ()() ()

1
22 2

1 1
1

2 2

sin 1 1 10 sin

11 1 sin 2 , 1 1
4

N

i i
i

n n i i

πy y y

y πy y x

−

+

=

⎡ ⎤+ − +⎣ ⎦

+ − + = + +

∑
0

[–50, 50]

19 (1 + 6 + 12)

Inseparable

(–1, …, –1) Multimodal

13 Schaffer’s F6
()

()

1 2 2 2
1 2

22 2
1 1 2

sin 0.5
0.5

1 0.001

N

i

x x

x x

−

=

⎛ ⎞+ −
⎜ ⎟+
⎜ ⎟⎡ ⎤+ +⎣ ⎦⎝ ⎠

∑ 0
[–100, 100]

23 (1 + 7 + 15)
Inseparable

(0, …, 0) Multimodal

14 Zakharov
2 4

2

1 1 1

1 1
2 2

N N N

i i i
i i i

x ix ix
= = =

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ 0

[–5, 10]
17 (1 + 4 + 12)

Inseparable

(0, …, 0) Unimodal

134 M.T. Hoque and S. Iqbal

Table 2 Comparison among GAs based on benchmark functions (number of variables = 2)

Functions Performance measure SGA FNGA TRGA KGA

f1 (Easom) Best –1 –1 –1 –1
Average –0.767 –0.755 –0.998 –0.999

S.D. 0.3285 0.3634 0.0076 0.0032
Avg. gen. 655.567 751.9 1,299.1 1,178.5

f2 (Carrom table) Best –24.1568 –24.1568 –24.1568 –24.1568
Average –24.1544 –24.1541 –14.1567 –24.1568

S.D. 0.0041 0.0043 2.31e-04 1.44e-04
Avg. gen. 1,027.7 995.367 1,414.3 1,356.5

f3 (Egg holder) Best –959.6407 –959.6407 –959.5797 –959.6407
Average –959.9735 –959.6155 –959.4355 –959.6407

S.D. 23.4004 22.9353 0.7254 1.115E-13
Avg. gen. 956.5667 718.3 1320.7 796.2667

f4 (Leon) Best 3.823e-08 8.307e-08 2.328e-10 1.886e-08
Average 0.0188 0.0171 1.35e-05 1.67e-05

S.D. 0.0402 0.0394 1.99e-05 3.09e-05
Avg. gen. 966.7 972.267 901.667 836.033

f5 (Rosenbrock) Best 3.647e-10 6.14e-05 3.64e-10 1.055e-10
Average 0.0703 0.0684 4.692e-05 5.935e-05

S.D. 0.0866 0.0749 5.913e-05 8.259e-05
Avg. gen. 891.2333 696.8333 981.5333 676.166

f6 (Schaffer’s F2) Best 0 0 0 0
Average 0.0066 0.005 1.00e-04 5.09e-05

S.D. 0.0152 0.0132 1.53e-04 7.06e-05
Avg. gen. 853 938.7333 721.8333 864.5667

f7 (Zettl) Best –0.0037 –0.00379 –0.00379 –0.00379
Average 0.00534 0.00302 –0.003787 –0.003787

S.D. 0.0209 0.0186 3.51e-06 3.91e-06
Avg. gen. 476.2667 425.0667 154.7333 61.8

Note: Best results are highlighted in italic.

Table 3 focuses on the results of functions with
30 variables. The sphere, cigar and rotated hyper-ellipsoid
(in short called as Ellipsoid in this study) are highly
separable and unimodal. We observe that all the algorithms
could reach the global minima, however, KGA and FNGA
resulted faster convergence. The Griewank, Levy, extended
Schaffer’s F6 and Zakharov functions are the most
challenging functions being inseparable and multimodal.

KGA performed best for Zakharov function in terms of
fitness values and for Griewank and Levy functions in terms
of convergence speed. However, generalised conclusion
using a small set of benchmark problems may not be
appropriate, as no single search algorithm is best on average
for all problems as explained in no free lunch theorem
(Wolpert and Macready, 1997).

5.1.1 Convergence test

To further investigate the convergence process while
searching for global minima, we plot the average fitness

found from the 30 iterations per generation in Figure 5. It
exhibits separate plots for each of the 14 test functions,
where the left column contains the plots for functions with
two variables and the right column includes those for the
functions with 30 variables. We observe that KGA gave
superior performance than SGA and FNGA with large
differences for f1 to f4 and f6 to f7. For these function, KGA
and TRGA performed comparatively. For two-dimensional
functions f5 and 30-dimensional functions, f8 to f12,
performances of KGA were competitive, however better.
For Schaffer’s F6 function (f13), performance of SGA was
effective than others both in terms of fitness value and
search progress. KGA gave better fitness value for
Zakharov function (f14), however the plots shows that the
convergence progress of TRGA was better.

5.2 Sampling performance for PSP

Here, we investigate the sampling capacity of the proposed
KGA in locating the conformation of protein within the

 Genetic algorithm-based improved sampling for protein structure prediction 135

complex search space. The primary structure of protein
defines the function of protein when folded into tertiary
structure. However, due to large degree of freedom, the
primary protein sequence can fold into an astronomical
number of structures. Lattice models of proteins are
extremely useful for the discretisation of the real
conformation space by sacrificing the atomic detail (Hart
and Newman, 2001). In the form of tertiary structure,
proteins have the minimum free energy conformation.
Therefore, we first applied KGA to find the minimum
energy conformation for widely used 2D hydrophobic-polar
(HP) model (Hoque et al., 2011). Later, we exercised the
technique in case of real PSP.

5.2.1 Sampling discrete protein structure space

Here, we compared the performances of FNGA, TRGA,
KGA and STGA in discrete protein structure sampling.

STGA utilises a variable population size between two
successive generations following a periodic scheme
in the form of a saw-tooth function along with
population re-initialisation with randomly generated new
chromosomes. In comparison, TRGA replaces portion of the
population by randomly generated chromosomes. For the
STGA, we used the best recommended parameters in
Koumousis and Katsaras (2006). The benchmark HP
sequences (see Table 4) were used and the results are given
in Table 5. TRGA performed better compared to both
FNGA and STGA and showed its robustness while solving
this hard optimisation problem. Further, FNGA also
outperformed STGA in this case as well. KGA
outperformed all the other variations for these hard
optimisation problems.

Table 3 Comparison among GAs based on benchmark functions (number of variables = 30)

Functions Performance measure SGA FNGA TRGA KGA

f8 (Sphere) Best 0 0 0 0
Average 0 0 0 0

S.D. 0 0 0 0
Avg. gen. 622.667 621.133 640.300 612.133

f9 (Cigar) Best 0 0 0 0
Average 0 0 0 0

S.D. 0 0 0 0
Avg. gen. 585.5 580.226 580.2667 644.1

f10 (Ellipsoid) Best 0 0 0 0
Average 0 0 0 0

S.D. 0 0 0 0
Avg. gen. 619.7 591.4 609.2333 567.7333

f11 (Griewank) Best 0.0425 0 0.0204 0.0526
Average 0.3582 0.4053 0.4148 0.4047

S.D. 0.2912 0.4081 0.2397 0.3098
Avg. gen. 1,034.5 982.3667 1,045.7 918.0667

f12 (Levy) Best 0.4947 0.4949 3.95e-07 0.9576
Average 2.2665 1.8086 2.0548 2.5639

S.D. 1.0159 0.9203 1.0451 1.0739
Avg. gen. 1,221.267 1,149.367 1,145.933 1,142.8

f13 (Schaffer’s F6) Best 0.3733 0.3733 0.4297 0.4518
Average 0.4447 0.4527 0.4598 0.4786

S.D. 0.0315 0.0293 0.0183 0.014
Avg. gen. 1,756.7 1,783.8 1,377.9 1,442

f14 (Zakharov) Best 207.1913 206.9732 152.2861 167.4725
Average 345.3214 333.733 234.8338 233.0159

S.D. 78.1125 80.7571 39.9526 44.8688
Avg. gen. 1,985.3 1,960.1 1,980.7 1,938.8

Note: Best results are highlighted in italic.

136 M.T. Hoque and S. Iqbal

Figure 5 Convergence progresses by SGA (black dotted line), FNGA (blue dashed line), TRGA (red dash-dot line) and KGA (green solid
line) in consecutive generations for the 14 benchmark test functions (see online version for colours)

Convergence test
2 dimensional functions 30 dimensional functions

f1: Easom function

f8: Sphere function

f2: Carrom table function

f9: Cigar function

f3: Egg holder function

f10: Ellipsoid function

Notes: The left column shows the convergence processes for seven functions with two variables (dimensions), whereas the right
column shows those for functions with 30 variables (dimensions). In each plot, the x-axis and y-axis show the number of
generations and the average fitness values of 30 iterations, respectively.

 Genetic algorithm-based improved sampling for protein structure prediction 137

Figure 5 Convergence progresses by SGA (black dotted line), FNGA (blue dashed line), TRGA (red dash-dot line) and KGA (green solid
line) in consecutive generations for the 14 benchmark test functions (continued) (see online version for colours)

Convergence test
2 dimensional functions 30 dimensional functions

f4: Leon function

f11: Griewank function

f5: Rosenbrock function

f12: Levy function

f6: Schaffer’s F2 function

f13: Schaffer’s F6 function

f7: Zettl function

f14: Zakharov function

Notes: The left column shows the convergence processes for seven functions with two variables (dimensions), whereas the right
column shows those for functions with 30 variables (dimensions). In each plot, the x-axis and y-axis show the number of
generations and the average fitness values of 30 iterations, respectively.

138 M.T. Hoque and S. Iqbal

Figure 6 KGA versus YGA, in getting lower energy minimum (see online version for colours)

Note: PDB ID: 1b72, 49 residues long.

Figure 7 KGA versus YGA comparison in the energy versus RMSD space for greater coverage (see online version for colours)

Note: Ran for 400 generations, sequence ID 1b72.

 Genetic algorithm-based improved sampling for protein structure prediction 139

Table 4 Benchmark protein sequences for 2D HP model

Length Sequences Ref.

50 H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2 Unger and Moult (1993)
60 P2H3PH8P3H10PHP3H12P4H6PH2PHP Unger and Moult (1993)
64 H12(PH)2(P2H2)2P2HP2H2PPHP2H2P2(H2P2)2(HP)2H12 Unger and Moult (1993)
85 4H4P12H6P12H3P12H3P12H3P1H2P2H2P2H2P1H1P1H Lesh et al. (2003)
100 3P2H2P4H2P3H1P2H1P2H1P4H8P6H2P6H9P1H1P2H1P11H2P3H1P2H1P1H2P1H1P3H6P3H Lesh et al. (2003)

Table 5 Comparisons of STGA, FNGA, TRGA and KGA based on the benchmark sequences (see Table 4)

Len.
STGA FNGA TRGA KGA

Fitness
(Avg.)

Fitness
(S.D.)

Fitness
(Avg.)

Fitness
(S.D.)

Fitness
(Avg.)

Fitness
(S.D.)

Fitness
(Avg.)

Fitness
(S.D.)

50 –12.78 1.481 –18.4 2.3664319 –21 0 –21 0
60 –25.6 2.221 –30 1.6996732 –33.8 1.154701 –34.7 0.823273
64 –22.4 1.578 –29.9 1.5238839 –37 1.1301 –37.5 0.707107
85 –32.5 2.273 –43.1 2.1832697 –46.8 1.264911 –49.3 1.159502
100 –27.6 3.062 –37.9 3.5730473 –44.8 1.135292 –45.5 0.849837

Notes: Average (Avg.) and standard deviations (S.D.) values are obtained from ten iterations and the maximum generation was
6,000. Best results are highlighted in italic.

Figure 8 Comparison of KGA versus YGA for sampling diversity PDB ID: length (a) 1b72:49, (b) 2reb:60 and (c) 1af7:72 (see online
version for colours)

(a) (b)

(c)

140 M.T. Hoque and S. Iqbal

5.2.2 Sampling real protein structure space

Here, we compare the sampling performance of KGA by
putting it in the real PSP scenario. A state-of-the-art,
fragment free ab initio structure prediction algorithm based
on GA had been developed in Faraggi et al. (2009). We call
this GA, YGA, in this paper and compare KGA with it. To
have a fair comparison between YGA and KGA, we only
replaced YGA of the real ab initio program of Faraggi et al.
(2009) with our KGA keeping other components same.
There are 16 benchmark sequences discussed in Faraggi
et al. (2009). We ran several of them to characterise the
sampling performance of KGA in real scenario of PSP.

First, we check the performance by comparing the
achievability of low energy conformation. We found that
YGA’s improvement gets flat (Figure 6) in obtaining lower
energy after around 200 generations. KGA exceed YGA in
obtaining lower energy conformation and it did not get flat.
Therefore, we let KGA run till 1,000 generations (shown up
to 700 generations in Figure 6) to highlight the performance
fluctuation between KGA and YGA. The same
characteristic is found for other runs as well.

Second, to confirm that KGA is not switching heavily
among few sets of diverse conformations, we also compared
the total coverage in the RMSD versus energy space. For
same number of generations KGA is found to sample
relatively larger area as compared in Figure 7.

Third, we wanted to see the effectiveness of KGA in
producing new samples in every consecutive generations.
For this, as the generation is passing, we created
conformational groups or clusters of protein structures
(chromosomes of the population) that are at least 2.5 Å
root-mean-square-deviation (RMSD) apart. We plotted
generation versus the number of such clusters in Figure 8.
KGA generated more diverse sample in consecutive
generations. It is also interesting to note that as the length of
the sequence increases the diversity also increases in KGA
which is a good sampling characteristic, whereas YGA
remains monotonic and does not vary noticeably based on
the length.

6 Conclusions

This paper proposes two variations of classical GA for
enhanced sampling performance. At first, FNGA with a new
crossover technique is presented. Later, we combined twin
removal-based genetic algorithm (TRGA) that maintains
optimal diversity, with FNGA to design the final sampling
algorithm, KGA. The new KGA can extract more
information from a finite number of generations as well as
can achieve the robustness.

The performances of SGA, FNGA, TRGA and KGA are
empirically compared on a range of continuous benchmark
test functions. Moreover, the proposed sampling algorithms
are employed in search of minimum energy conformation of
PSP problem both in discrete and real scopes. For discrete
PSP problem, KGA outperformed the STGA. Moreover, we
compared the sampling properties of KGA with YGA, a

state-of-the-art real ab initio PSP program. KGA is found to
have promising sampling characteristics. Therefore, a useful
future research direction out of this work would be to apply
KGA in other discrete and hard combinatorial optimisation
problems.

Supplementary material

The KGA code can be found here: http://cs.uno.edu/
~tamjid/Software/FN_KGA/FN_KGA.zip.

Acknowledgements

MTH would like to thank Professor Yaoqi Zhou and
Dr. Yuedong Yang for providing the code of the
ab initio PSP software including YGA to compare with
KGA directly and for helpful discussion. MTH and SI
gratefully acknowledge the Louisiana Board of Regents
through the Board of Regents Support Fund, LEQSF
(2013–16)-RD-A-19 and LEQSF (2016-19)-RD-B-07.

References
Anfinsen, C.B. (1973) ‘The principles that govern the folding of

protein chains’, Science, Vol. 181, No. 4096, pp.223–230.
Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J.,

Beenen, M., Leaver-Fay, A., Baker, D., Popović, Z. and
Players, F. (2010) ‘Predicting protein structures with a
multiplayer online game’, Nature, Vol. 466, No. 7307,
pp.756–760.

Das, R. and Baker, D. (2008) ‘Macromolecular modeling
with Rosetta’, Biochemistry, Annual Reviews, Vol. 77,
pp.363–382.

Dehzangi, A., Paliwal, K., Lyons, J., Sharma, A. and Sattar, A.
(2013a) ‘Exploring potential discriminatory information
embedded in PSSM to enhance protein structural class
prediction accuracy’, Pattern Recognition in Bioinformatics,
Springer, Vol. 7986 of the series Lecture Notes in Computer
Science, pp.208–219.

Dehzangi, A., Paliwal, K., Sharma, A., Dehzangi, O. and Sattar, A.
(2013b) ‘A combination of feature extraction methods with an
ensemble of different classifiers for protein structural
class prediction problem’, IEEE/ACM Transactions on
Computational Biology and Bioinformatics, Vol. 10, No. 3,
pp.564–575.

Faraggi, E., Yang, Y., Zhang, S. and Zhou, Y. (2009) ‘Predicting
continuous local structure and the effect of its substitution for
secondary structure in fragment-free protein structure
prediction’, Structure, Vol. 17, No. 11, pp.1515–1527.

Hart, W.E. and Newman, A. (2001) Protein Structure Prediction
with Lattice Models, CRC Press [online]
http://dimacs.rutgers.edu/~alantha/papers2/alantha-bill-
bc.pdf.

Higgs, T., Stantic, B., Hoque, M.T. and Sattar, A. (2012) ‘Refining
genetic algorithm twin removal for high-resolution protein
structure prediction’, 2012 IEEE Congress on Evolutionary
Computation (CEC), IEEE, pp.1–8.

Holland, J.H. (1992) ‘Genetic algorithms’, Scientific American
Journal, pp.66–72.

 Genetic algorithm-based improved sampling for protein structure prediction 141

Holland, J.H. (2001) Adaptation in Natural and Artificial Systems,
The MIT Press, Cambridge, Massachusetts London, England.

Hoque, M.T. (2015) Genetic Algorithms based Improved
Sampling, Tech. Report TR-2015/4.

Hoque, M.T., Chetty, M. and Dooley, L.S. (2005) ‘A new guided
genetic algorithm for 2D hydrophobic-hydrophilic model to
predict protein folding’, IEEE Congress on Evolutionary
Computation (CEC).

Hoque, M.T., Chetty, M. and Dooley, L.S. (2007) ‘Generalized
schemata theorem incorporating twin removal for protein
structure prediction’, Pattern Recognition in Bioinformatics,
Springer, Singapore.

Hoque, M.T., Chetty, M., Lewis, A. and Sattar, A. (2011)
‘Twin removal in genetic algorithms for protein structure
prediction using low-resolution model’, IEEE/ACM
Transactions on Computational Biology and Bioinformatics,
Vol. 8, No. 1, pp.234–245.

Iqbal, S., Kaykobad, M. and Rahman, M.S. (2015a) ‘Solving the
multi-objective vehicle routing problem with soft time
windows with the help of bees’, Swarm and Evolutionary
Computation, Vol. 24, pp.50–64.

Iqbal, S., Mishra, A. and Hoque, M.T. (2015b) ‘Improved
prediction of accessible surface area results in efficient energy
function application’, Journal of Theoretical Biology,
Vol. 380, pp.380–391.

Islam, M.N., Iqbal, S., Katebi, A.R. and Hoque, M.T. (2015) ‘A
balanced secondary structure predictor’, Journal of
Theoretical Biology.

Koumousis, V.K. and Katsaras, C.P. (2006) ‘A saw-tooth
genetic algorithm combining the effects of variable
population size and reinitialization to enhance performance’,
IEEE Transactions on Evolutionary Computation, Vol. 10,
No. 1, pp.19–28.

Lesh, N., Mitzenmacher, M. and Whitesides, S. (2003) ‘A
complete and effective move set for simplified protein
folding’, RECOMB, Berlin, Germany.

Levinthal, C. (1968) ‘Are there pathways for protein folding’, J.
Chim. Phys., Vol. 65, No. 1, pp.44–45.

Liang, J., Qu, B. and Suganthan, P. (2013) Problem Definitions
and Evaluation Criteria for the CEC 2014 Special Session
and Competition on Single Objective Real-Parameter
Numerical Optimization, Computational Intelligence
Laboratory, Zhengzhou University, Zhengzhou China and
Technical Report, Nanyang Technological University,
Singapore.

Lyons, J., Biswas, N., Sharma, A., Dehzangi, A. and Paliwal, K.K.
(2014) ‘Protein fold recognition by alignment of amino acid
residues using kernelized dynamic time warping’, Journal of
Theoretical Biology, Vol. 354, pp.137–145.

Lyons, J., Dehzangi, A., Heffernan, R., Yang, Y., Zhou, Y.,
Sharma, A. and Paliwal, K. (2015) ‘Advancing the accuracy
of protein fold recognition by utilizing profiles from hidden
Markov models’, IEEE Transaction on NanoBioscience,
Vol. 14, No. 7, pp.761–772.

Milan, T. (2013) ‘Artificial bee colony (ABC) algorithm with
crossover and mutation’, Appl. Soft Comput., pp.687–697.

Paliwal, K.K., Sharma, A., Lyons, J. and Dehzangi, A. (2014) ‘A
tri-gram based feature extraction technique using linear
probabilities of position specific scoring matrix for protein
fold recognition’, IEEE Transactions on NanoBioscience,
Vol. 13, No. 1, pp.44–50.

Park, B.H. and Levitt, M. (1995) ‘The complexity and accuracy of
discrete state models of protein structure’, Journal of
Molecular Biology, Vol. 249, No. 2, pp.493–507.

Rashid, M.A., Iqbal, S., Khatib, F., Hoque, M.T. and Sattar, A.
(2016) ‘Guided macro-mutation in a graded energy
based genetic algorithm for protein structure prediction’,
Computational Biology and Chemistry, Elsevier.

Rashid, M.A., Khatib, F., Hoque, M.T. and Sattar, A. (2015) ‘An
enhanced genetic algorithm for ab initio protein
structure prediction’, IEEE Transactions on Evolutionary
Computation No. 4.

Rohl, C.A., Strauss, C.E., Misura, K.M. and Baker, D. (2004)
‘Protein structure prediction using Rosetta’, Methods in
Enzymology, Vol. 383, pp.66–93.

Saini, H., Raicar, G., Sharma, A., Lal, S., Dehzangi, A.,
Rajeshkannan, A., Lyons, J., Biswas, N. and Paliwal, K.K.
(2014) ‘Protein structural class prediction via k-separated
bigrams using position specific scoring matrix’, J. Adv.
Comput. Intell. Intell. Informatics, Vol. 8, No. 4, pp.474–479.

Sharma, A., Lyons, J., Dehzangi, A. and Paliwal, K.K. (2013) ‘A
feature extraction technique using bi-gram probabilities of
position specific scoring matrix for protein fold recognition’,
Journal of Theoretical Biology, Vol. 320, No. 1, pp.41–46.

Unger, R. and Moult, J. (1993) ‘Genetic algorithms for protein
folding simulations’, Journal of Molecular Biology, Vol. 231,
No. 1, pp.75–81.

Wolpert, D.H. and Macready, W.G. (1997) ‘No free lunch
theorems for optimization’, IEEE Transactions on
Evolutionary Computation, Vol. 1, No. 1, pp.67–82.

Yao, X., Liu, Y. and Lin, G. (1999) ‘Evolutionary programming
made faster’, IEEE Transaction on Evolutionary
Computation, Vol. 3, No. 2, pp.82–102..

