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Abstract: The quest for efficient sampling algorithms continues to be a demanding research 
topic due to their wide spread applications. Here, we present an extension of genetic algorithm 
(GA) to incorporate improved sampling capacity. We develop a fast-navigating genetic algorithm 
(FNGA) using associated-memory (AM)-based crossover operation which gives more trials with 
best chromosomes subpart and helps to navigate faster. To mitigate the increased similarity 
within population, the twin removal genetic algorithm or TRGA is applied. The optimally 
diverge chromosomes generated by TRGA can introduce potential subpart to enhance the 
performance of FNGA further. Thus, we combine FNGA and TRGA and named the 
combination, kite genetic algorithm (KGA). The proposed FNGA and KGA are empirically 
tested with benchmark functions and the results are found promising. We further employ KGA in 
the conformational search for the fragment-free protein tertiary structure prediction. The results 
of ab initio protein structure modelling show that the sampling performance of KGA is 
competitive. 

Keywords: genetic algorithms; fast-navigation; twin removal; associated-memory; protein 
structure prediction; hard optimisation; ab initio prediction; crossover; mutation; chromosome 
correlation factor. 

Reference to this paper should be made as follows: Hoque, M.T. and Iqbal, S. (2017) ‘Genetic 
algorithm-based improved sampling for protein structure prediction’, Int. J. Bio-Inspired 
Computation, Vol. 9, No. 3, pp.129–141. 

Biographical notes: Md Tamjidul Hoque received his PhD in Information Technology from the 
Monash University, Australia in 2008. He received his MSc and BSc in Computer Science and 
Engineering from the Bangladesh University of Engineering and Technology (BUET) in 2002 
and 1998, respectively. He is currently an Assistant Professor with the Computer Science 
Department, University of New Orleans (UNO), New Orleans, LA, USA. He is also the Director 
of the Bioinformatics and Machine Learning Lab at the UNO. 

Sumaiya Iqbal is a Graduate Assistant at the University of New Orleans (UNO) and a member of 
the Bioinformatics and Machine Learning Lab at the UNO. She is an Assistant Professor, 
Computer Science and Engineering Department, Bangladesh University of Engineering and 
Technology. 

 

1 Introduction 

Given the amino acid sequence of a protein, the task of 
protein structure prediction (PSP) is to determine its  
three-dimensional native structure. Anfinsen’s (1973) 
thermodynamic hypothesis informs that the protein structure 
can be predicted using the information encoded within the 
amino acid sequence of that protein. PSP matters because 
the structure of the protein determines its function and 
proteins systematise the cellular functions in an organism. 
Once we know sequence to function relationship, we can 
determine what to do at the molecular level for our health 
and wellbeing. Protein can fold into astronomical number of 
possible structures from its amino acid sequence 

considering admissible degree of freedom of the 
constituents. Thus, the search of native conformation within 
the PSP task is a hard optimisation problem. However, the 
Levinthal (1968) paradox shows the dual property of protein 
that it folds in a spontaneous manner in nature. Therefore, it 
is possible to guide the PSP task by well-defined 
computational approaches. 

There are mainly three computational approaches for 
predicting structure of protein: comparative modelling, 
threading or fold recognition, and ab initio prediction.  
The comparative modelling (also known as homology 
modelling) requires one or more experimental tertiary 
structures of homologous proteins to be present. Protein fold 
recognition is a useful alternative to understand structures of 
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proteins that do not have their homologous protein’s 
structures; however still requires proteins of known 
structure having similar folds. A wide range of machine 
learning algorithm-based predictors have been developed in 
the last two decades to predict protein folds (Sharma et al., 
2013; Paliwal et al., 2014; Lyons et al., 2014, 2015) and 
protein structural classes (Dehzangi et al., 2013a, 2013b, 
Saini et al., 2014; Islam et al., 2015) using features such as 
secondary structure profile, PSSM profile, bigram and 
trigram probabilities, HMM profile, etc. 

However, the template free ab initio approach for PSP 
problem is the most exciting one, it is yet very challenging 
as it does not use previously solved structures. The ab initio 
prediction of protein structure can provide us the insight of 
how the three-dimensional structure of protein is attained as 
it transforms sequence into structure from scratch. To solve 
PSP, we need to have an efficient conformational sampling 
algorithm along with an accurate energy function (Cooper  
et al., 2010; Das and Baker, 2008; Iqbal et al., 2015b). For a 
simplified model-based PSP problem, we have seen that 
even if we have a well-defined fitness or energy function to 
recognise the final goal, there is no efficient conformational 
sampling algorithm that can conveniently get the known 
final answer starting from a random conformation (Hoque  
et al., 2005). In this paper, we are especially motivated to 
provide GA-based improved sampling algorithm for PSP 
problem. 

Genetic algorithm (GA), first proposed by Holland 
(1992, 2001), is an adaptive heuristic search and 
optimisation algorithm premised on the Darwin’s principle 
of natural selection and genetics. A population of 
chromosomes (i.e., the solutions), proportionate selection 
procedure and the two operators: crossover and mutation are 
the constituents of a simple genetic algorithm (SGA). GA’s 
crossover operation is regarded as its heart. Crossover has 
also been utilised within other bio-inspired optimisation 
algorithms as well to enhance their performances  
(Iqbal et al., 2015a; Milan, 2013). We have designed an 
associated-memory (AM)-based crossover within SGA to 
prioritise the crossover-participated better chromosome 
fragments. This crossover encourages the selection of fitter 
fragments stored in the memory. We named this alternate 
SGA a fast-navigating genetic algorithm (FNGA), as it 
converges faster. 

Now, contrary to the diversity issues, our proposed 
FNGA approach would increase the similarity within 
population adversely. Therefore, after FNGA’s role per 
generation, we immediately applied twin removal-based 
genetic algorithm (TRGA), by which similar chromosomes 
are replaced by new random chromosomes. TRGA 
approach can introduce potential subpart or sub-solution to 
enhance the performance of FNGA. And, the improved seed  
from FNGA can allow TRGA to enhance performance 
simultaneously when these two approaches are combined in 
the aforementioned way. We named the combination of 
FNGA and TRGA, as kite genetic algorithm or, KGA in 
short, as it resembles the characteristics of the bird kite in 
hunting down fast as well as searching thoroughly. KGA 

has been empirically found effective for a wide range of 
benchmark test functions. Moreover, KGA is proved to  
be a generic sampling algorithm while compared with  
state-of-the-art algorithms such as saw-tooth genetic 
algorithm (STGA) (Koumousis and Katsaras, 2006) and GA 
(named YGA) for ab initio PSP solution (Faraggi et al., 
2009). 

Figure 1 (a) Structural organisation of the two different sets of 
AM, where n indicates the length of the chromosome* 
(b) AM-crossover: a single point crossover operation 
involving AM (see online version for colours) 

 

 
Note: *The structural organisation of the memory is 

based on single point crosser operation. 

2 Fast-navigating genetic algorithm 

The concept of the crossover is virtuous: parents after 
mating can produce better offspring. The idea for designing 
FNGA comes from the fact that there is no hard criteria to 
precisely select better parents for crossover as the selection 
procedure works probabilistically. Thus, while it is 
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beneficial to converge faster rather than exploring further, 
there is no mechanism within SGA to provide more chances 
to utilise the best available parts of chromosomes. We see 
the opportunity to allow the available best part, lengthen 
from minimum to maximum possible fragments, actively 
rather than relying on selection procedure. That is, 
exploring more with the best available subpart of the 
chromosome would help navigate faster as well as accurate. 

To apply the ideas, we introduce two AM sets: one 
upper triangular and one lower triangular in shape (see 
Figure 1), based on single point crossover operation. 
Crossover operation is assumed to be applied at a higher 
rate (Koumousis and Katsaras, 2006), primarily for the 
intensification of a potential search area. We modify the 
crossover operation with the help of AM to navigate faster. 
We termed the modified crossover as ‘AM-crossover’ (see 
Figure 2). The number of the individual memory in each 
AM is equal to (length-1) of the chromosome. The AM 
stores the crossover-position-based participating best 
chromosome’s subpart for the passing generations. In each 
crossover, we check that whether the subpart from AM 
generates better result than that of 2nd parent, in 
combination with 1st parent’s subpart. The increased 
exploration of the best subpart stored in AM provides better 
trial for navigating faster as well as accurate solution 
without giving much chance to lose the better seed(s). 

Figure 2 Algorithm for AM-crossover procedure 

Procedure: AM-Crossover (Ca, Cb, i);  
RETURN off-spring: (Cc, Cd)     
Input: Parent chromosomes: (Ca, Cb); Crossover point: i 
Output: Offspring chromosomes = (Cc, Cd) 
// Ck = kth chromosome in the population,   
// ‘n’= (fixed) length of a chromosome, indicates the  
           number of loci, 
// ‘i’ = immediate lower-indexed-locus of the crossover  
           position, where 1< i < n, and ‘j’ = ‘i’+1, 
 

BEGIN  
   IF fitness (Ca [1 to i] + Cb [j to n]) > fitness (Ca [1 to i] + AMLT(i)) 
THEN 
        AMLT(i) = Cb [j to n];  Cc = Ca [1 to i] +  Cb [j to n]; 
   ELSE   
            Cc = Ca [1 to i] + AMLT(i); 
   END IF   
    
   IF fitness (Cb [1 to i] + Ca [j to n]) >  
       fitness (AMUT(i)+ Ca [j to n]) THEN 
        AMUT(i) = Cb [1 to i]; Cd = Cb [1 to i] +  Ca [j to n]; 
   ELSE   
        Cd = AMUT(i)+ Ca [j to n]; 
   END IF   
END  

 

3 Twin removal genetic algorithm 

It has been conclusively shown that a twin removal-based 
genetic algorithm (TRGA) affords considerably robust 
performance, especially for the hard optimisation problem 
such as ab initio PSP problem using lattice models as well 
as real all-atom model (Higgs et al., 2012; Hoque et al., 

2011; Rashid et al., 2015, 2016). GA crossover and 
mutation operations by incorporating twin removal can 
avoid becoming ineffectual by replacing closely similar 
chromosomes with optimal number of random 
conformations (Hoque et al., 2007). Here, we investigate the 
twin removal approach to formulate a superior algorithm 
further. The twin removal algorithm is illustrated in  
Figure 3. The application of twin removal strategy is 
controlled by CCF or, chromosome correlation factor 
(quantification is indicated by r here) which introduces the 
level of similarities while comparing chromosomes. An 
optimal value of r ensures the robust performance of GA. 
The CCF (r), defines the degree of similarity between 
chromosomes from 0% (when, r = 0) to 100% (when,  
r = 1). Hence, a value of r = 75% implies that the similarity 
is 75% between two chromosomes. It has already been 
studied that TRGA performs the best when r is kept equal to 
80% (Higgs et al., 2012; Hoque et al., 2011). Therefore, we 
also use the value of r = 0.8 in this study. 

Figure 3 Twin removal algorithm (TRGA) 

Procedure: Twin Removal (Popz, n);  
RETURN population  
Input: Population size = Popz,  
            Chromosome (C) length = n. 
Output: Population with admissible level of twin 
              similarity. 
// Ci and Cj, where .ji ≠  
// RetSimilarity (i, j) returns similarity of Ci and Cj in %. 

 

BEGIN 
   FOR i = 1 to )1( −zPop DO  

   IF  Ci.MarkDeleted = False THEN 
       FOR j = i+1 to zPop  DO  
           IF RetSimilarity(i, j)≥  r%  THEN 
               IF ( ) ( )ji CC Fitness Fitness <  THEN  

               Swap (Ci , Cj ) 
               END IF 
               C(j).MarkDeleted = True 

  END IF 
              END FOR 
           END IF 
    END FOR 
 END.  

4 Kite genetic algorithm 

The exploitation power of FNGA and exploration capacity 
of TRGA instigates us to combine them to form a novel GA 
which can perform effectively for a range of problems. We 
named the combination ‘kite-GA’ or ‘KGA’ in short as its 
ultimate form resembles the characteristic of bird kite in 
hunting down fast as well as searching thoroughly. The 
mechanisms of KGA are intended to enable effective search 
in a small as well as in a large neighbourhood of the search 
landscape. 
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Figure 4 Complete overview of KGA algorithm 

 
Notes: The three GA operators, AM-crossover, twin 

removal and mutation are highlighted in bold. The 
building blocks of FNGA and TRGA are further 
expanded within blue and green boxes, respectively. 

However, the ultimate form of KGA is determined 
empirically comparing the performance of two different 
combinations, termed: 

1 Switching-mode (Koumousis and Katsaras, 2006): 
FNGA is regularly executed in each generation within 
crossover and after every five generations TRGA is 
executed and FNGA is not executed at the same go. 

2 Mixing-mode (Yao et al., 1999): FNGA and TRGA are 
executed in the same generation. 

However, FNGA executed first within crossover to provide 
more trial to potential subpart but increases the similarities 
within the population and TRGA removes and maintains 
optimal similarities after performing all the operations  
such as crossover and mutation. From preliminary 
experiments on benchmark functions, we found that the 
performances of the two modes were close (Hoque, 2015). 
However, the mixing-mode was relatively superior  
over the switching-mode as in this mode every passing 
generations have balanced exploration and exploitation. 
Therefore, we integrated the mixing-mode within our final 
KGA algorithm. Finally, KGA applies three operators 
sequentially in every generation to generate the new 
population which are AM-based single point crossover, 

single point mutation and twin removal. The full flowchart 
of KGA is shown in Figure 4. 

5 Simulation studies 

In this section, we analyse the performances of proposed 
GA variations in two levels: 

1 we use widely adopted benchmark test functions to 
verify the proposed GA’s strength of searching for the 
global optima within the function’s complex landscapes 

2 we stress the algorithm’s sampling capacity to a limit 
by applying them in finding the optimal protein 
structure from astronomical conformational search 
space. 

We perform the later experiment for both discrete or lattice 
model (Park and Levitt, 1995) and real (Rohl et al., 2004) 
PSP problem. 

5.1 Sampling performance on benchmark functions 

We collected 14 different benchmark functions from the 
base functions used in the latest CEC competition (Liang  
et al., 2013). These comprehensive set includes test 
functions with several challenging characteristics, like 
separability, modality, and dimensionality. Seven functions 
of the set have two variables, yet difficult to optimise due to 
their complex landscapes and the rest are scaled to include 
higher number of dimensions. In this study, we set the 
number of variables equal to 30 for the scalable functions. 
The test functions are listed in Table 1. It shows the 
function’s name, formula, global minima and search bounds 
of the landscape. We used sequence of binary bits (‘0’ or, 
‘1’) to encode values of variables within the chromosomes 
of GA population. Each binary string corresponding to a 
variable has three parts: sign, decimal and fractional. The bit 
length of each variable differs for different functions due to 
different coverage of ranges within the search spaces shown 
in Table 1. 

The GA parameter values for all the experiments in this 
study are: population size, Popz = 200; rate of crossover,  
pc = 80%; rate of mutation, pm = 5%; elite rate, pe = 5%; 
maximum number of generations = 2,000. Moreover, 
roulette wheel approach is applied for the probabilistic 
selection of parents for the crossover operation. The display 
of results in Tables 2 and 3 include the best, average, 
standard deviation (S.D.) of the fitness values found from  
30 independent iterations. We also report the average 
number of generations (avg. gen.) required to converge in 
all 30 iterations. 

Table 2 displays the results for two-dimensional 
problems. The Easom, Leon, Rosenbrock and Zettl 
functions are unimodal, however, complex as their variables 
are interrelated (inseparable). Moreover, the first three of 
these functions have challenging landscapes with global 
minima inside a narrow space of the full landscape. 
Performances of KGA for Easom and Zettl functions are 
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effective. On the other hand, TRGA achieved minimum 
average finesses for Leon and Rosenbrock functions, 
however, KGA is competitive in both of the cases. The 
carrom table, egg holder and Schaffer’s F2 functions have 
additional complexity of having highly multimodal 

landscapes. For all the three functions, KGA outperformed 
the other variations. For carrom table and egg holder 
functions, only KGA could discover the global minima in 
every iterations 

Table 1 Description of benchmark test function 

No. Function 
name Function definition Global 

minima 
Bounds (point of 

minima) 
Bit length of a 

variable Properties 

Number of variables, N = 2 

1 Easom –cos(x1)cos(x2)exp(–(x1 – π)2 – (x2 – π)2) –1 [–100, 100] 
27 (1 + 7 + 19) 

Inseparable 

(π, π) Unimodal 

2 Carrom table ( ) ( )
2 2
1 2 2 2

1 2
1 exp 2 1 cos cos
30

x x
x x

π

⎛ ⎞+
⎜ ⎟− −
⎝ ⎠

 –24.1568 
[10, 10] 

40 (1 + 4 + 35) 
Inseparable 

(± 9.6461, ± 9.6461) Multimodal 

3 Egg holder 
( )

( )

1
2 2

1 1 2

47 sin 47
2

sin 47

xx x

x x x

− + + +

− − +

 –959.6407

[–512, 512] 

36 (1 + 10 + 25) 

Inseparable 

(512, 404.2319) Multimodal 

4 Leon ( ) ( )2 22
2 11100 1x x x− + −  0 

[–1.2, 1.2] 
18 (1 + 1 + 18) 

Inseparable 

(1, 1) Unimodal 

5 Rosenbrock ( ) ( )2 22
2 11100 1x x x− + −  0 

[–2.049, 2.048] 
23 (1 + 2 + 20) 

Inseparable 

(1, 1) Unimodal 

6 Schaffer’s F2 
( )

( )

2 2 2
1 2

22 2
1 2

sin 0.5
0.5

1 0.001

x x

x x

− −
+
⎡ ⎤+ +⎣ ⎦

 0 
[–100, 100] 

27 (1 + 7 + 19) 
Inseparable 

(0, 0) Multimodal 

7 Zettl ( )22 2
1 11 2

1 2
4

x x x x+ − +  –0.00379 
[–5, 5] 

29 (1 + 3 + 25) 
Inseparable 

(–0.0299, 0) Unimodal 

Number of variables, N = 30 

8 Sphere 2
1

N
i

i
x

=∑  0 
[–100, 100] 

21 (1 + 7 + 13) 
Separable 

(0, …, 0) Unimodal 

9 Cigar 2 6 2
1 1

10
N

i
i

x x
=

+ ∑  0 
[–100, 100] 

20 (1 + 7 + 12) 
Separable 

(0, …, 0) Unimodal 

10 Ellipsoid 2
1 1

N i
j

i j
x

= =∑ ∑  0 
[–100, 100] 

20 (1 + 7 + 12) 
Separable 

(0, …, 0) Unimodal 

11 Griewank 
2

1 1

cos 1
4000

NN
iiN

i i

x x
i= =

⎛ ⎞− +⎜ ⎟
⎝ ⎠∑ ∏  0 

[–600, 600] 
27 (1 + 10 + 16) 

Inseparable 

(0, …, 0) Multimodal 

12 Levy 
( ) ( ) ( )( )

( ) ( )( ) ( )

1
22 2

1 1
1

2 2

sin 1 1 10 sin

11 1 sin 2 , 1 1
4

N

i i
i

n n i i

πy y y

y πy y x

−

+

=

⎡ ⎤+ − +⎣ ⎦

+ − + = + +

∑
0 

[–50, 50] 

19 (1 + 6 + 12) 

Inseparable 

(–1, …, –1) Multimodal 

13 Schaffer’s F6 
( )

( )

1 2 2 2
1 2

22 2
1 1 2

sin 0.5
0.5

1 0.001

N

i

x x

x x

−

=

⎛ ⎞+ −
⎜ ⎟+
⎜ ⎟⎡ ⎤+ +⎣ ⎦⎝ ⎠

∑  0 
[–100, 100] 

23 (1 + 7 + 15) 
Inseparable 

(0, …, 0) Multimodal 

14 Zakharov 
2 4

2

1 1 1

1 1
2 2

N N N

i i i
i i i

x ix ix
= = =

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑  0 

[–5, 10] 
17 (1 + 4 + 12) 

Inseparable 

(0, …, 0) Unimodal 
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Table 2 Comparison among GAs based on benchmark functions (number of variables = 2) 

Functions Performance measure SGA FNGA TRGA KGA 

f1 (Easom) Best –1 –1 –1 –1 
Average –0.767 –0.755 –0.998 –0.999 

S.D. 0.3285 0.3634 0.0076 0.0032 
Avg. gen. 655.567 751.9 1,299.1 1,178.5 

f2 (Carrom table) Best –24.1568 –24.1568 –24.1568 –24.1568 
Average –24.1544 –24.1541 –14.1567 –24.1568 

S.D. 0.0041 0.0043 2.31e-04 1.44e-04 
Avg. gen. 1,027.7 995.367 1,414.3 1,356.5 

f3 (Egg holder) Best –959.6407 –959.6407 –959.5797 –959.6407 
Average –959.9735 –959.6155 –959.4355 –959.6407 

S.D. 23.4004 22.9353 0.7254 1.115E-13 
Avg. gen. 956.5667 718.3 1320.7 796.2667 

f4 (Leon) Best 3.823e-08 8.307e-08 2.328e-10 1.886e-08 
Average 0.0188 0.0171 1.35e-05 1.67e-05 

S.D. 0.0402 0.0394 1.99e-05 3.09e-05 
Avg. gen. 966.7 972.267 901.667 836.033 

f5 (Rosenbrock) Best 3.647e-10 6.14e-05 3.64e-10 1.055e-10 
Average 0.0703 0.0684 4.692e-05 5.935e-05 

S.D. 0.0866 0.0749 5.913e-05 8.259e-05 
Avg. gen. 891.2333 696.8333 981.5333 676.166 

f6 (Schaffer’s F2) Best 0 0 0 0 
Average 0.0066 0.005 1.00e-04 5.09e-05 

S.D. 0.0152 0.0132 1.53e-04 7.06e-05 
Avg. gen. 853 938.7333 721.8333 864.5667 

f7 (Zettl) Best –0.0037 –0.00379 –0.00379 –0.00379 
Average 0.00534 0.00302 –0.003787 –0.003787 

S.D. 0.0209 0.0186 3.51e-06 3.91e-06 
Avg. gen. 476.2667 425.0667 154.7333 61.8 

Note: Best results are highlighted in italic. 
 

Table 3 focuses on the results of functions with  
30 variables. The sphere, cigar and rotated hyper-ellipsoid 
(in short called as Ellipsoid in this study) are highly 
separable and unimodal. We observe that all the algorithms 
could reach the global minima, however, KGA and FNGA 
resulted faster convergence. The Griewank, Levy, extended 
Schaffer’s F6 and Zakharov functions are the most 
challenging functions being inseparable and multimodal. 

KGA performed best for Zakharov function in terms of 
fitness values and for Griewank and Levy functions in terms 
of convergence speed. However, generalised conclusion 
using a small set of benchmark problems may not be 
appropriate, as no single search algorithm is best on average 
for all problems as explained in no free lunch theorem 
(Wolpert and Macready, 1997). 

5.1.1 Convergence test 

To further investigate the convergence process while 
searching for global minima, we plot the average fitness 

found from the 30 iterations per generation in Figure 5. It 
exhibits separate plots for each of the 14 test functions, 
where the left column contains the plots for functions with 
two variables and the right column includes those for the 
functions with 30 variables. We observe that KGA gave 
superior performance than SGA and FNGA with large 
differences for f1 to f4 and f6 to f7. For these function, KGA 
and TRGA performed comparatively. For two-dimensional 
functions f5 and 30-dimensional functions, f8 to f12, 
performances of KGA were competitive, however better. 
For Schaffer’s F6 function (f13), performance of SGA was 
effective than others both in terms of fitness value and 
search progress. KGA gave better fitness value for 
Zakharov function (f14), however the plots shows that the 
convergence progress of TRGA was better. 

5.2 Sampling performance for PSP 

Here, we investigate the sampling capacity of the proposed 
KGA in locating the conformation of protein within the 
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complex search space. The primary structure of protein 
defines the function of protein when folded into tertiary 
structure. However, due to large degree of freedom, the 
primary protein sequence can fold into an astronomical 
number of structures. Lattice models of proteins are 
extremely useful for the discretisation of the real 
conformation space by sacrificing the atomic detail (Hart 
and Newman, 2001). In the form of tertiary structure, 
proteins have the minimum free energy conformation. 
Therefore, we first applied KGA to find the minimum 
energy conformation for widely used 2D hydrophobic-polar 
(HP) model (Hoque et al., 2011). Later, we exercised the 
technique in case of real PSP. 

5.2.1 Sampling discrete protein structure space 

Here, we compared the performances of FNGA, TRGA, 
KGA and STGA in discrete protein structure sampling. 

STGA utilises a variable population size between two 
successive generations following a periodic scheme  
in the form of a saw-tooth function along with  
population re-initialisation with randomly generated new 
chromosomes. In comparison, TRGA replaces portion of the 
population by randomly generated chromosomes. For the 
STGA, we used the best recommended parameters in 
Koumousis and Katsaras (2006). The benchmark HP 
sequences (see Table 4) were used and the results are given 
in Table 5. TRGA performed better compared to both 
FNGA and STGA and showed its robustness while solving 
this hard optimisation problem. Further, FNGA also 
outperformed STGA in this case as well. KGA 
outperformed all the other variations for these hard 
optimisation problems. 

Table 3 Comparison among GAs based on benchmark functions (number of variables = 30) 

Functions Performance measure SGA FNGA TRGA KGA 

f8 (Sphere) Best 0 0 0 0 
Average 0 0 0 0 

S.D. 0 0 0 0 
Avg. gen. 622.667 621.133 640.300 612.133 

f9 (Cigar) Best 0 0 0 0 
Average 0 0 0 0 

S.D. 0 0 0 0 
Avg. gen. 585.5 580.226 580.2667 644.1 

f10 (Ellipsoid) Best 0 0 0 0 
Average 0 0 0 0 

S.D. 0 0 0 0 
Avg. gen. 619.7 591.4 609.2333 567.7333 

f11 (Griewank) Best 0.0425 0 0.0204 0.0526 
Average 0.3582 0.4053 0.4148 0.4047 

S.D. 0.2912 0.4081 0.2397 0.3098 
Avg. gen. 1,034.5 982.3667 1,045.7 918.0667 

f12 (Levy) Best 0.4947 0.4949 3.95e-07 0.9576 
Average 2.2665 1.8086 2.0548 2.5639 

S.D. 1.0159 0.9203 1.0451 1.0739 
Avg. gen. 1,221.267 1,149.367 1,145.933 1,142.8 

f13 (Schaffer’s F6) Best 0.3733 0.3733 0.4297 0.4518 
Average 0.4447 0.4527 0.4598 0.4786 

S.D. 0.0315 0.0293 0.0183 0.014 
Avg. gen. 1,756.7 1,783.8 1,377.9 1,442 

f14 (Zakharov) Best 207.1913 206.9732 152.2861 167.4725 
Average 345.3214 333.733 234.8338 233.0159 

S.D. 78.1125 80.7571 39.9526 44.8688 
Avg. gen. 1,985.3 1,960.1 1,980.7 1,938.8 

Note: Best results are highlighted in italic. 
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Figure 5 Convergence progresses by SGA (black dotted line), FNGA (blue dashed line), TRGA (red dash-dot line) and KGA (green solid 
line) in consecutive generations for the 14 benchmark test functions (see online version for colours) 

Convergence test 
2 dimensional functions 30 dimensional functions 

f1: Easom function 

 

f8: Sphere function 

 

f2: Carrom table function 

 

f9: Cigar function 

 

f3: Egg holder function 

 

f10: Ellipsoid function 

 
 

Notes: The left column shows the convergence processes for seven functions with two variables (dimensions), whereas the right 
column shows those for functions with 30 variables (dimensions). In each plot, the x-axis and y-axis show the number of 
generations and the average fitness values of 30 iterations, respectively. 
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Figure 5 Convergence progresses by SGA (black dotted line), FNGA (blue dashed line), TRGA (red dash-dot line) and KGA (green solid 
line) in consecutive generations for the 14 benchmark test functions (continued) (see online version for colours) 

Convergence test 
2 dimensional functions 30 dimensional functions 

f4: Leon function 

 

f11: Griewank function 

 

f5: Rosenbrock function 

 

f12: Levy function 

 

f6: Schaffer’s F2 function 

 

f13: Schaffer’s F6 function 

 

f7: Zettl function 

 

f14: Zakharov function 

 
 

Notes: The left column shows the convergence processes for seven functions with two variables (dimensions), whereas the right 
column shows those for functions with 30 variables (dimensions). In each plot, the x-axis and y-axis show the number of 
generations and the average fitness values of 30 iterations, respectively. 
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Figure 6 KGA versus YGA, in getting lower energy minimum (see online version for colours) 

 
Note: PDB ID: 1b72, 49 residues long. 

Figure 7 KGA versus YGA comparison in the energy versus RMSD space for greater coverage (see online version for colours) 

 

 
Note: Ran for 400 generations, sequence ID 1b72. 
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Table 4 Benchmark protein sequences for 2D HP model 

Length Sequences Ref. 

50 H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2 Unger and Moult (1993) 
60 P2H3PH8P3H10PHP3H12P4H6PH2PHP Unger and Moult (1993) 
64 H12(PH)2(P2H2)2P2HP2H2PPHP2H2P2(H2P2)2(HP)2H12 Unger and Moult (1993) 
85 4H4P12H6P12H3P12H3P12H3P1H2P2H2P2H2P1H1P1H Lesh et al. (2003) 
100 3P2H2P4H2P3H1P2H1P2H1P4H8P6H2P6H9P1H1P2H1P11H2P3H1P2H1P1H2P1H1P3H6P3H Lesh et al. (2003) 

Table 5 Comparisons of STGA, FNGA, TRGA and KGA based on the benchmark sequences (see Table 4) 

Len. 
STGA  FNGA  TRGA  KGA 

Fitness 
(Avg.) 

Fitness 
(S.D.) 

Fitness 
(Avg.) 

Fitness 
(S.D.) 

Fitness 
(Avg.) 

Fitness 
(S.D.) 

Fitness 
(Avg.) 

Fitness 
(S.D.) 

50 –12.78 1.481  –18.4 2.3664319  –21 0  –21 0 
60 –25.6 2.221  –30 1.6996732  –33.8 1.154701  –34.7 0.823273 
64 –22.4 1.578  –29.9 1.5238839  –37 1.1301  –37.5 0.707107 
85 –32.5 2.273  –43.1 2.1832697  –46.8 1.264911  –49.3 1.159502 
100 –27.6 3.062  –37.9 3.5730473  –44.8 1.135292  –45.5 0.849837 

Notes: Average (Avg.) and standard deviations (S.D.) values are obtained from ten iterations and the maximum generation was 
6,000. Best results are highlighted in italic. 

Figure 8 Comparison of KGA versus YGA for sampling diversity PDB ID: length (a) 1b72:49, (b) 2reb:60 and (c) 1af7:72 (see online 
version for colours) 

  
(a)       (b) 

 
(c) 
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5.2.2 Sampling real protein structure space 

Here, we compare the sampling performance of KGA by 
putting it in the real PSP scenario. A state-of-the-art, 
fragment free ab initio structure prediction algorithm based 
on GA had been developed in Faraggi et al. (2009). We call 
this GA, YGA, in this paper and compare KGA with it. To 
have a fair comparison between YGA and KGA, we only 
replaced YGA of the real ab initio program of Faraggi et al. 
(2009) with our KGA keeping other components same. 
There are 16 benchmark sequences discussed in Faraggi  
et al. (2009). We ran several of them to characterise the 
sampling performance of KGA in real scenario of PSP. 

First, we check the performance by comparing the 
achievability of low energy conformation. We found that 
YGA’s improvement gets flat (Figure 6) in obtaining lower 
energy after around 200 generations. KGA exceed YGA in 
obtaining lower energy conformation and it did not get flat. 
Therefore, we let KGA run till 1,000 generations (shown up 
to 700 generations in Figure 6) to highlight the performance 
fluctuation between KGA and YGA. The same 
characteristic is found for other runs as well. 

Second, to confirm that KGA is not switching heavily 
among few sets of diverse conformations, we also compared 
the total coverage in the RMSD versus energy space. For 
same number of generations KGA is found to sample 
relatively larger area as compared in Figure 7. 

Third, we wanted to see the effectiveness of KGA in 
producing new samples in every consecutive generations. 
For this, as the generation is passing, we created 
conformational groups or clusters of protein structures 
(chromosomes of the population) that are at least 2.5 Å  
root-mean-square-deviation (RMSD) apart. We plotted 
generation versus the number of such clusters in Figure 8. 
KGA generated more diverse sample in consecutive 
generations. It is also interesting to note that as the length of 
the sequence increases the diversity also increases in KGA 
which is a good sampling characteristic, whereas YGA 
remains monotonic and does not vary noticeably based on 
the length. 

6 Conclusions 

This paper proposes two variations of classical GA for 
enhanced sampling performance. At first, FNGA with a new 
crossover technique is presented. Later, we combined twin 
removal-based genetic algorithm (TRGA) that maintains 
optimal diversity, with FNGA to design the final sampling 
algorithm, KGA. The new KGA can extract more 
information from a finite number of generations as well as 
can achieve the robustness. 

The performances of SGA, FNGA, TRGA and KGA are 
empirically compared on a range of continuous benchmark 
test functions. Moreover, the proposed sampling algorithms 
are employed in search of minimum energy conformation of 
PSP problem both in discrete and real scopes. For discrete 
PSP problem, KGA outperformed the STGA. Moreover, we 
compared the sampling properties of KGA with YGA, a 

state-of-the-art real ab initio PSP program. KGA is found to 
have promising sampling characteristics. Therefore, a useful 
future research direction out of this work would be to apply 
KGA in other discrete and hard combinatorial optimisation 
problems. 

Supplementary material 

The KGA code can be found here: http://cs.uno.edu/ 
~tamjid/Software/FN_KGA/FN_KGA.zip. 
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