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Abstract: Background: Energy functions of proteins are developed to quantitatively capture the desirable
features of physical interaction that determines the protein folding and structure prediction processes.

Objective: 1t is vital to develop an accurate energy function to discriminate native-like proteins from decoys.
Along the same line, we develop an accurate energy function, which involves careful modelling of the reference
state.

Method: Here we propose a novel three-dimensional ideal gas reference state based energy function, which is
based on three distinct hydrophobic-hydrophilic interactions of amino acids. The three distinct group of
interactions, namely hydrophobic versus hydrophilic, hydrophobic versus hydrophobic and hydrophilic versus
hydrophilic are controlled via three-dimensional optimized values of alpha. Using Genetic Algorithm, we
optimized the contributions of each of the three groups along with the z-score to discriminate the native from
the decoys.

Results: The approach allows us to segregate the statistics, which in turn enables us to model the interactions
more accurately without grossly averaging the impact as done in well-known ideal gas reference state based
approach. To compute the energy scores we use a database of 4332 known protein structures obtained from the
Protein Data Bank.

Conclusion: Our energy function is found to be very competitive compared to the state-of-the-art approaches,
and outperforms the nearest competitor by 40.9% for the most challenging Rosetta decoy-set.

Keywords: Decoy-set, energy function, genetic algorithm, optimization, protein structure.

1. INTRODUCTION

The history of protein structure prediction is based on the
thermodynamic hypothesis that the native structure gains the
lowest free energy compared to the other decoys or the
intermediate  conformations under same physiological
conditions [1]. A good energy function model that can
discriminate between native and a nearly infinite number of
possible decoy structures is vital for protein structure prediction.
So far, many attempts have been made towards development of
better energy functions which can be categorized into two
different types [2-6] i) physical-based potential, based on

molecular dynamics or computation of atom-atom forces [7, 8];
and 7i) knowledge-based potentials, obtained from statistical
analysis of known protein structure [9-14]. Some of the energy
functions are modeled based on a simplified representation of
the amino acids which consider a few heavy atoms and a few
major forces. Others are based on all atom (167 heavy atoms),
knowledge based, distance dependent potential. For example,
Kortemme et al. [15] obtained a knowledge-based hydrogen-
bonding potential. Yang and Zhou incorporated polar-polar and
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polar-nonpolar orientation dependence to the distance-
dependent knowledge-based potential that is based on a
distance-scaled, finite-ideal gas reference (DFIRE) state [16] by
treating polar atoms as a dipole (ADFIRE) [17]. Lu et al. [18]
defined side-chain orientation according to rigid blocks of
atoms (OPUS-PSP).

Zhang and Zhang [19] employed orientation angles between
two vector pairs predefined for each side-chain (RWplus). Zhou
and Skolnick improved over the DFIRE energy function by
incorporating relative orientation of the planes associated with
each heavy atom (GOAP) [20]. For obvious reasons, the detailed
and relatively complete approaches are the all atom based
approaches. The efficacy of the all-atom based approach relies
heavily on the formulation of the more accurate reference state
[21]. Our proposed work in this paper focuses on all-atom as
well as knowledge based approach that derives an effective
energy function from known protein structures with
multidimensional reference states.

In the seminal work of DFIRE, reference state is
formulated by placing the neighboring residues on a modified
spherical space. The appropriate shape of the sphere is
determined by a single parameter alpha, where the alpha value
implies a constant factor (assuming amino-acids are distributed
in a protein conformation as a finite system) [10]. On the
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contrary, our motivation towards this work comes from the fact
that amino acids, based on their types, are not distributed
equally over the 3D structure of a protein in order to be able to
consider them in the same scale on an average by a single
dimensional parameter (Fig. 1a). Rather, they can be
segregated into at least 3 different categories based on the usual
distribution with the protein conformations [22] (Fig. 1b).
Related to this, is one of the dominating properties of protein
folding, modeled in a hydrophobic-hydrophilic or
hydrophobic-polar (HP) model. This model considers that the
hydrophobic (H) amino acids have a fear of solvents like water
so, they want to keep themselves away from the aqueous
solvents forming the core or inner-kernel [23] of a protein and
thus remain inside of the protein. On the other hand, the
hydrophilic or the polar (P) amino acids or residues, being
attracted to water, try and remain outside the core, forming the
outer-kernel (Fig. 1b). Thus Ps are often found on the outside
of the folded structure [24, 25], and in between these two
layers, there is a thin HP-mixed-layer [23]. Following these
aforementioned properties, we proposed our multidimensional
reference states based energy function 3DIGARS to improve
prediction accuracy.

For an application point of view, an energy function can
be crucial. For example, the energy function can be extended
to identify appropriate MicroRNA (miRNA) which can play
an important role as a regulator in biological processes [26,
27], can be applied in the SNP interaction studies [28] as
well as in studying and identifying appropriate DNA-binding
proteins [29]. Altogether, they provide important scope of
studying the cellular functions and interactions [30].

The rest of the paper is organized as follows. Section 2
discusses the evolution of the relevant theories and underpins
theoretical aspects of our proposed approaches. Section 3
discusses our approach for training data collections as well
as the collections of the most challenging decoy-datasets to
be used for measuring performances of our approach
compared to other state-of-the-art approaches. Section 4,
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discusses the obtained results and lastly section 5 concludes
the proposed energy functions.

2. MATERIALS AND METHOD

2.1. Residue Specific All-Atom Probability Discriminatory
Function Based Potential

Initially, the residue specific all-atom probability
discriminatory function (RAPDF) based energy function was
proposed by Samudrala and Moult [9] which was based on
averaging reference state. In this approach, the energy score
of a conformation was computed in two different ways: as a
conditional probability based approach and as a free energy
based approach. It was found that these two approaches are
equivalent. Although, we would like to note that it is easier
to work with the conditional probability based approach
because of the Boltzmann assumption on three different
aspects of it: i) an equilibrium distribution of atom pairs, if)
the physical nature of the reference state and iii) the
probability of observing a system in any given state is also
subject to change with respect to the temperature [2].

Conditional probabilities of pairwise atom-atom
interactions in proteins can be computed using statistical
observations of native structures [9] from protein-databases
such as PDB [31]. The conditional probabilities are based on
two different types of structures one which is native (N) and
the other is the near native or decoy (D). Energy potentials
are developed based on the pairwise atom-atom interactions
of native structures. Pairwise atom-atom distance is a set of
intra-atomic separation within a structure represented as
{871, where {S”} is the distance between atom i and j of
amino acid type « and b, respectively. The probability that
the atom pairs separated by distance {S”,} belong to native

conformation can be represented by P(N|S,). Therefore,

we write the general formula of conditional probability such
that atom pairs separated by distance {S”} belong to the

Inner Kernel
HP Folding Kernels

(b)

Fig. (1). (a) Native like protein conformation [23], presented in a 3D hexagonal-close-packing (HCP) configuration using hydrophobic (H)
and hydrophilic or polar (P) residues. The H-H interactions space is relatively smaller than P-P interactions space, since hydrophobic
residues (black ball) being afraid of water tends to remain inside of the central space. (b) 3D metaphoric HP folding kernels, depicted based
on HCP configuration based HP model, showing the 3 layers of distributions of amino-acids [22, 23].
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native conformation as:
P(N|S;,)=(P(S), | N)* P(N))/ P(S},) )

Assuming that all distances are independent of each
other, conditional probabilities can be expressed as the
probabilities of observing the set of distances as products of
the probabilities of observing each individual distance [9]

P(S;, | )= TP, | Nyand P(S;,) = [ T P(S3,) &)
i i
Substituting the Eq. 1 by Eq. 2 we get Eq. 3:
P(N|Sy,)= P(N)*[ [ P(Si, | N)/ P(S], (3

ij

P(N) in the above equation is a constant and independent of

conformation of a given structure. Hence, it can be omitted
from further consideration. Omission of the P(/N) implies
that scores from different sequences cannot be compared.
Thus, the log form of Eq. 3 is used to both scale the
quantities to a small range and give a form similar to that of
a potential of mean force. Scoring Function (SF)
proportional to the negative log conditional probability
shows that the structure is correct and can be written as:

(=3I P(SE, | N)/ P(SE)K)
SFUSEH=| 7 »_ @)
~InP(N|{S},})

Therefore, given a protein structure or conformation,
using Eq. 4, we can calculate the distance separation between
all pairs of atom types and compute the total energy by
summing up the probability ratios assigned to each
separation between a pair of atom types. Thus, we can
compute the probability of observing atom type a and b in a
particular bin which is S distance apart in a native

conformation P(S,, | N) as:

P(S,,N)=N(S,,)/ Y N(S,,) )

where N(S,) is the frequency of observation of atom types

a and b in a particular bin which is S distance apart. The
denominator is the number of such observation for all bins.

The denominator in Eq. 4 is the average over different
atom types in the experimental conformations which
represent the random reference state. Thus the probability of
seeing any two atom types a and b in a bin which is S
distance apart can be represented as:

P(S,) =Y N(S,)/ D > N(S,,) (6)

S ab

where, ZN (S,,) is the total number of counts summed over
ab

all pairs of atom types in a particular distance S, and the

denominator is the total number of counts summed over all

pairs of atom types summed over all bins.

As RAPDF energy function is based on averaging
reference state, it does not consider the distribution of amino
acids in 3D conformational space. Whereas, DFIRE based
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potential considers the protein as a sphere comprised of
uniformly distributed points. Also, it suggests that the radius

of such spheres does not increase in #* as in an infinite
system. Rather, the protein is a finite system and so the
increase in the radius is represented by a (a variable which
can be < 2). This motivated our work towards a more
detailed study into a DFIRE based potential.

2.2. DFIRE Based Potential

Distance-scaled, finite ideal-gas reference (DFIRE) state
is a distance-dependent, all atom, knowledge-based potential
[10]. The reference state formulation in DFIRE is more
appealing and effective over RAPDF. For the reference state,
RAPDF uses an averaged distribution over all residue or
atom pairs. Whereas, DFIRE uses a pair distribution function
from statistical mechanics to formulate the finite ideal-gas
reference state.

The basis of a finite ideal-gas reference state can be
explained by exploring the fundamental equation of
statistical mechanics for an infinite system. For an infinite
system, the observed number of atom pairs, namely i " and
j" atoms, denoted as N, (i,/,d), at spatial distance d with
tolerance +Ad are related to the pair distribution function
g;(d) . It describes how density varies as a function of

distance from a reference particle and can be represented as:
|-

Ny, (i, j,d) == N;N;g,(d)(47d*Ad) (N
v .

where the volume of the system is represented as v*, and N;
and N are the number of i and ;* atoms in a system

respectively. The potential, based on pairwise distance
P(i,j,d), can be written as:

—RTIn((N,,,(i, j,d)*V")

PG, j.d)= (N;N:(47d*Ad)))

®)

In case there is no interaction between the atoms, we can
write: P(i, j,d) = 0, thus from Eq. 8 we can have:

N (i jsd) = Ny (i j,d) = NN (47dAd | v*) ©)

Above equations, from statistical mechanics can be
directly applied in infinite systems. However, proteins are
finite systems. Therefore, the pair density will not be

increased by a square factor (i.e., d 2 ), rather it will increase
by some factor o (i.e., d*) which was determined by the

best fit of d“ considering the number of points in 1011
finite protein size spheres.

Thus, Eq. 9 can be written as:
N ., (i.j,d)=N;N;(4zxd“Ad | v") 10)
Furthermore, Eq. 8 can be rewritten as:
—RTIn((N,,,(i, j,d)*V")
(N;N;(47d“Ad)))

PG, j.d)= an
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Assuming that there is no interaction beyond a cutoff
distance of d,, or P(i,j,d) =0atd > d,,, d is replaced by

d., . This leads Eq. 11 to form Eq. 12:
N()b&‘ (i’j’ d)

(di} Aild N oy (05 j>d.)

Here, a constant 1) is placed for mutation induced changes
and is also needed since temperature is a free parameter in
potentials derived from static structures. Eq. 12 implies new
equation for N (i, /,d):

cut >

P(,j,d)=-nRTIn (12)

e¢uﬁ)kf% Sy

cut cut

obs (l ] dwt) (13)

It is to be noted that the Eq. 13 does not contain any
distance dependent terms. Rather, it is a formulation
obtained from ideal gas reference state and implementable
for finite system.

Similar to the approaches in Samudrala and Moult [9],
DFIRE also uses 167 heavy atom types. The cutoff distance
d,, is = 14.5 A. The bin width Ad has different widths for d
<2A,Ad=2 A, for2 A<d<8A,Ad=0.5A and for 8 A <d
<15 A, Ad=1 A. Thus, the total number of bins is 20. Bin

width and d,, were not optimized.

cut

2.3. 3DIGARS, the Proposed Approach

Based on the hydrophobic-hydrophilic model, we
constructed three different energy score libraries with bin size,
Ar = 0.5 A each, with a cutoff distance of 15 A, where r
represents each distant bin with values ranging from 0.5 A to 15
A. The value of Ar,, = 0.5 A as all bin sizes are the same. We

name these libraries as i) hydrophobic-hydrophilic (HP); ii)
hydrophobic-hydrophobic ~ (HH); and i) hydrophilic-
hydrophilic (PP) interactions libraries. Each of these libraries are
comprised of its independent reference states. A reference state
corresponding to the HP group can be written as:

( ¥\ Ar
EXP-HP _ ..
Nl'.j (I") - L J Ar (NO})S—HP(I’.]’ rcut) (14)

cut
+Nobs—HH (i’j’ ruut ) + Nubs—PP(i5j5 rL‘ut ))
where N7 (r) represents the expected number of atom

pairs at distance r for the HP group, N,,_,,»(i, j, r..) represents

the number of observations of atom pairs i and ;" at the

cutoff distance from the HP library, N,,_,,, (i, j,r.,,) represents

obs—

the number of observations of atom pairs ;" and ;j” at the cutoff
distance from the HH library, N, ,,(i,/,7.,,) represents the

number of observations of atom pairs i” and j” at the cutoff

distance from the PP library and o, is the parameter that
belongs to the hydrophobic versus hydrophilic group which is
obtained by the GA.

Similarly, reference states corresponding to the HH group
can be written as:

Mishra and Hoque

N?W%)L—J v

Lut Lut

obs—. HP(l .]’ Lut) (15)

+Nubs—HH(l’J’rcut ) + Nubs—PP(l’J’rcut ))

EXP-HH
N

where (r) represents the expected number of atom

pairs at dlstance r for the HH group, oy is the parameter that
belongs to the HH group which is also obtained by the GA
and the rest of the terms are as defined under Eq. 14.

Finally, reference state corresponding to the PP group
can be written as:

N?”%>L¥JWA

cut

olm HP(Z J’ cut) (16)

+Nulm HH(Z ]’ cut)+ NubA—PP(l ] cut ))

NEXP-PP
ij

pairs at distance  for the PP group, a,, is the parameter that

belongs to PP group which is also obtained by the GA and

the rest of the terms are as defined under Eq. 14.

where (r) represents the expected number of atom

While generating energy score libraries, residue-atom pairs
are categorized to identify which group (HP, HH or PP)
mentioned above they fall in. E.g., while considering
interaction between two Nitrogen (N) atoms of the amino acid
Alanine (ALA:N versus ALA:N), we categorize this
interaction as belonging to the HH group as ALA (Alanine) is
hydrophobic in nature. Similarly, while considering the
interaction between a Nitrogen (N) atom of amino acid
Arginine (ARG) and a Carbon (C) atom of amino acid Serine
(SER); (ARG:N versus SER:C), we categorize this interaction
as belonging to the PP group as both residues Arginine (ARG)
and Serine (SER) are hydrophilic in nature. The categorization
of an amino acid into the HP group is obtained from (Hoque et
al.) [25]. Along with the categorization of residue-atom pairs,
the frequency counts of the specific group is updated
simultaneously. Furthermore, these energy score libraries are
used for total energy or minimum energy calculations. Once we
compute frequencies of all 3 groups, we generate energy scores
corresponding to each group. Energy scores for the HP group
can be written as:

ES[T. ==In(N,,_,p (i, j,r)/ NS (r)) a7

ij.r

th at

where ES is the energy score of atom pair " " and j
distant b1n r for group HP, N, _,,(i,j,r)is the observed
number of atom pair;”and j” at distant bin » for HP group
and N""(r) is the expected number of atom pairs at
distance r for HP group.

Similarly, energy scores for HH group can be written as:

ES; = =N,y (i, jo1) | N (1)) (18)

ij,r

where ES/' is the energy score of atom pair i” and ;"
distant bin » for group HH, N,,,_,,,(i,/,7) is the observed
number of atom pair i” and j” at distant bin » for HH group

EXP—HH
N,

and () is the expected number of atom pairs at

distance » for HH group.
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Finally energy scores for PP group can be written as:

ES[, ==In(N,,,_pp(i, j.r)/ NI (1)) (19)

where ES/ is the energy score of atom pair i" and ;" at
distant bin r for group PP, N, ,,(i,/,7) is the observed
number of atom pairi” and ;" at distant bin » for PP group
and N/ (r) is the expected number of atom pairs at
distance » for PP group.

Later minimum energy or total energy of decoy-set as
well as native proteins are calculated from these energy score
libraries. We use weight factors S, Sm and f,, to optimize
the contribution of each of the three energy score libraries.
So, total energy (TE) of the protein conformation can be

written as:
TE = ﬂhthp + ﬂthhh + ﬂppEpp

(20)

where S, , B, and 8, are 3D weights of contribution and

E, . Ey. and E  are the energy scores obtained from three

hp?°

groups HP, HH and PP. Here £, can be written as:
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Eyp=) ES" Q1)
ijr
Similarly, E,, can be written as:
EHH = ZE 51:{’ (22)
ijr
And, E,, can be written as:
Epp = ZESS}‘; (23)
i,j,r

We use a GA [32] for determining the best possible
values of alpha (o, om and ap,), and optimized the
contributions of each of the three groups by determining
their appropriate weights (B, Sws and f,,) along with the z-
score to discriminate the native from their decoys. The z-
score of a native structure is defined as:

native

ESD

average

Z= (4)

is the energy of the native protein, £ and

average

where £

native

E, are the average and standard deviation, respectively, of

( Training data source )

v

| Data purification |

y

( Dataset of 4332 protein sequences )

v

Initialize GA population randomly, each

chromosome represents

6 variables (3o and 3f3)

>
P

£

Ohh { op

(H) - hydrophilic (P) residue pair

Compute energy score from hydrophobic

(H) - hydrophobic

Compute energy score from hydrophobic

Compute energy score from hydrophilic
(H) residue pair (P) - hydrophilic (P) residue pair

T

A

Bhn { Brp

y

A

y

Compute total energy of each protein in
Moulder, Rosetta and I-Tasser decoy-sets

!

Compute correct count and z-score for Moulder,
Rosetta and I-Tasser decoy-sets

!

Calculate fitness based

score

on correct count and z-

rl‘l Save best weight

Preserve 10% elites
Do crossover by roulette wheel sampling
Do mutation

Generation < 2000

A
Correct count and z-score
of decoy-sets

Fig. (2). Overview of 3DIGARS energy function framework, including dataset collection, 3-dimensional energy score libraries creation, GA
optimization based on 3 decoy-sets: Moulder, Rosetta and I-Tasser.
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the energies of all the decoy-sets. (Fig. 2) illustrates an
overview of the 3DIGARS energy function framework.

In the GA optimization, the value of alpha and beta
ranges from 0 to 2 and -2 to 2 respectively. Population size
was set to 50 and single-point crossover and mutation were
applied. The elite, crossover and mutation rates were 5%,
90% and 50% respectively. Scores were optimized based on
3 decoy-sets: Moulder, Rosetta and I-Tasser.

The best values obtained for alphas are: a;, = 1.3802541,
o = 1.6832844 and o, = 1.9315737. The obtained best beta
values are [y, = 1.4921875, S = 0.55859375 and f,, =
0.265625. Plots of obtained fitness versus the ayp, oy and a,,
values at each generation show the GA performance on
selecting best fitness and also consistency of the obtained
fitness with values of o, o and ay,, (Fig. 3).

Fitness versuso_hp, o_hh and o_pp

Ny

le

3 -

s TN

=

3 1

=

= 05 1) a-hh o-pp
0
= n O OO OO OO A W ™= =+ o EH -
O N O O O O O N VWV VU V. VUV VUV VvV VO
SR~ Q0 R X N0 X X X 0 0 X D
L T B B B I I B B I I B B B B |
HF'F'F'HHH'F'F'HF'F'HHF'

overall fitness

Fig. (3). Fitness versus dnp, onn and opp values. The values remain
stable during optimization.

To access the performance of our 3DIGARS energy
function, we tested 3DIGARS using the most challenging
decoy-sets. The performance of 3DIGARS is compared
against the state-of-the-art approaches DFIRE, RWplus,
dDFIRE and DFIRE2.0 based on the number of correctly
identified proteins and average z-score for three different
decoy-sets (see Table 1).

3. DATASET COLLECTION AND DECOY DATASETS
3.1. Training Dataset

Datasets to generate energy scores were obtained from
three different sources, the PDB [31] server, the ccPDB [33]
(Compilation and Creation of datasets from PDB) server and
the PISCES [34] server. We collected datasets with a
maximum resolution < 1.5, similarity cutoff 30%, single
chain and with a maximum chain length of 500.

Furthermore, we removed proteins with unknown
residues as well as missing residues anywhere except for 5
terminal residues on either side. We generated the purified
dataset keeping all other specifications common besides
maximum resolution, ranging from 1.5 to 2.5, and sequence
identities cutoff, of 25%, 30%, 40%, 50%, 70% and 100%.
The overall best result is obtained from a collection of 4332
proteins from PDB which are single chains with 100%
sequence identity cut-off. Selecting proteins with 100%
identity cutoff means we are not discarding proteins even if
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they are structurally similar because they would represent
true frequency distribution. None of the structures from the
training dataset were used in the test dataset (Decoy
Datasets). Likewise, none of the structures from test datasets
were included in training dataset.

3.2. Decoy Datasets

We used 6 decoy datasets to evaluate the performance of
the proposed energy function, 3DIGARS, which are
described in brief as follows:

3.2.1. Moulder Decoy-Set

The Moulder [35] decoy-set consists of 20 proteins for
which 300 comparative models were built using homologous
templates. The models were build based on the following
criteria: i) alignment of the models should not share more
than 95% of identically aligned positions or ii) alignment of
models should have at least 5 different alignment positions.
These decoys were build using the MODELLER-6 program
which applied a default model building routine with the
fastest refinement. This keeps most of the template structure
unchanged and different from decoys that are generated by
ab initio folding which have all structure regions
reassembled from scratch.

3.2.2. Rosetta Decoy-Set

A decoy-set for 58 proteins was generated by the Baker
Lab. It contains 20 random models and 100 lowest scoring
models from 10,000 decoys using ROSETTA de novo
structure prediction followed by all-atom refinement [36]. The
current Rosetta decoy-set has been improved over the original
Rosetta decoy-set by adding side chains to the
centroid/backbone models and refining the structures to
remove steric clashes. The improvements over the original
Rosetta were based on four important points required to
generate optimal decoy-sets: 1) the decoy-set should contain
conformations for a wide variety of different proteins to avoid
over fitting; 2) the decoy-set should contain conformation close
to (< 4A) to the native structure; 3) the decoy-set should consist
of conformations that are at least near local minima of energy
potential; and 4) the decoy-set should be produced without
using information from the native structure [37].

3.2.3. I-Tasser Decoy-Set-11

[-Tasser [38] decoy-set-Il was generated first by using
Monte Carlo Simulations and then refined by GROMACS4.0
MD simulation to remove steric clashes and improve
hydrogen-bonding networks [38]. This set contains of 56
proteins each of which contains 300-500 decoys generated
by both template-based modeling and atomic-level structure
refinement.

3.2.4. 4state_Reduced

The 4state_reduced [39] decoy-set consists of 7 proteins.
A program called segmod was used to build all atom models
from the CA (alpha carbon) atoms. The CA positions for
these decoys were generated by choosing 10 residues in each
protein using a 4-state off-lattice model.



Three-Dimensional Ideal Gas Reference State Based Energy Function

Table 1. Comparison between DFIRE, RWplus, dDFIRE, DFIRE2.0 and our energy function, 3DIGARS, based on correct

selection of native from their decoy-set and z-score.
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Decoy-Sets DFIRE RWplus dDFIRE DFIRE2.0 3DIGARS No. of Targets
19 19 18 19 19
Moulder 20
(-2.97) (-2.84) (-2.74) (-2.71) (-2.998)
20 20 12 22 31
Rosetta 58
(-1.82) (-1.47) (-0.83) (-1.76) (-2.023)
49 56 48 53 33
[-Tasser 56
(-4.02) (-5.77) (-5.03) (-4.548) (-4.036)
6 6 7 6 6
4state_reduced 7
- (-3.48) (-3.51) (-4.15) (-3.16) (-3.37)
. 4 4 4 4 5
Fisa_casp3 5
(-4.80) (-5.17) (-4.83) (-5.08) (-4.31)
7 7 6 7 7
Lmds 10
(-0.88) (-1.03) (-2.44) (-0.71) (-1.96)

Bold indicates best score and underline indicates competitive score. Values close to the best results are indicated by underscore (°_").

3.2.5. Fisa_Casp3

Fisa_casp3 [40] decoy-set consists of 5 proteins. It contains
decoys for proteins predicted by the Baker group for CASP3
(Critical Assessment of protein Structure Prediction). The main
chains for these decoys were generated using a fragment
insertion simulated annealing procedure whereas side chains
were modelled with a SCWRL package.

3.2.6. Imds

Imds [41] stands for local minima decoy-set. It contains 10
proteins derived from experimental secondary structures from
diverse structural classes. Two of the proteins among 10 are
from CASP3 (Critical Assessment of protein Structure
Prediction) targets.

4. RESULTS

In addition to Moulder [35], Rosetta [36] and I-Tasser
[38] decoy-sets (used in Genetic Algorithm (GA)
optimization), we tested our energy function, 3DIGARS, on
3 additional decoy-sets, namely 4state reduced [39],
Fisa_casp3 [40] and Imds [41]. It is important to note that the
Moulder, Rosetta and I-Tasser sets are considered to be the
most challenging decoy-sets whereas the other 3 decoy-sets:
4state reduced, Fisa casp3, and Imds are only considered
moderate to less challenging for a computational energy
function in terms of identifying native out of decoys. The
performance of various energy functions on the 6 decoy-sets
for native structure selection is compared in Table 1.
3DIGARS, appears to consistently perform better compared
to the state-of-the-art methods. In Table 1, the values within
the parenthesis are average z-scores of the native structures,
and the values outside of parenthesis are the number of
correct counts. Here the term correct count can be described
as the number of correctly identified native proteins from its
decoy-sets. A good energy function is one that assigns the
lowest free energy to the native proteins within its decoy-set.
Thus, it is able to classify native proteins from its decoy-set
more effectively. In other words, correct count implies that
an efficient energy function can identify more native proteins
from the collection of natives within their decoy-sets. Results

for DFIRE, RWplus and dDFIRE are obtained from the
GOAP: A Generalized Orientation-Dependent, All-Atom
Statistical Potential from Protein Structure Prediction [42].
Correct count and z-score for DFIRE2.0 is computed from
the DFIRE2.0 package freely available from the Sparks Lab
online server [43]. Correct counts by 3DIGARS is calculated
using energy score libraries generated using the dataset with
resolution 2.5, sequence similarity cutoff of 100%, and
keeping all other parameters used for data collection
common as described in DATASET section above. Table 1
clearly shows that the hydrophobic and hydrophilic based
energy function outperforms DFIRE, RWplus, dDFIRE and
DFIRE2.0 based energy functions for the most challenging
Rosetta and the moderately challenging Fisa casp3 decoy-
set. It is to be noted that both RWplus and I-Tasser are
designed by the same author. Hence, the rule is most likely
embedded within RWplus. Thus, the correct count of 56 out
of 56 total targets could be a special case. It is also evident
from Table 1 that the result of RWplus for the most
challenging Rosetta decoy-set is only 20 correct out of 58,
which is a relatively poor performance with respect to other
energy functions. Therefore, the performance of RWplus
over I-Tasser may not be considered as a very important
achievement.

Furthermore, we are often interested in determining
whether the mean from more than two populations or groups
are equal or not. Therefore, we also conducted Analysis of
Variance 1 (ANOVA 1) test to see if one energy function is
significantly better than other. ANOVA 1 is a statistical test
which is useful to compare the means of two, or more
groups. Comparison among the group means is done by
estimating comparisons of variance estimates [44].

To test whether the difference in means is statistically
significant we can perform ANOVA 1. If the ANOVA 1 F-test
shows a significant difference in means between the groups, we
would further want to perform pair-wise comparisons between
all the groups to determine how they differ [45].

Before testing statistical significance, we graphically
compared the means of the energy functions across all of the
energy functions (DFIRE, RWplus, dDFIRE, DFIRE2.0 and
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Fig. (4). Comparisons of mean correct count of proposed method with the state-of-the-art methods.

3DIGARS). We used the boxplot() function in R to create
side-by-side boxplots of measurements organized by groups
(energy functions) (Fig. 4). The data point located outside
the fences (“whiskers”) shown by the white circles are the
outliers. Outliers are an observation that are numerically
distant from the rest of the data. Data points that are 1.5
times outside the interquartile range, above the upper quartile
and below the lower quartile, are marked as outliers in the
boxplot() function with default parameter setup in R.

From Fig. (4), it appears that the mean correct count for
3DIGARS is highest. We further explain the difference
between the boxplots of different methods. From Table 1 we
can see that the sample size for each group is 6. As an
illustration, for the method 3DIGARS, the sample points sorted
in ascending order are 5, 6, 7, 19, 31 and 53, and the median
value (Q») of the sample space is 13. This splits the data set
into two halves (5, 6, 7) and (19, 31, 53). Since, each of the
halves of the data set contain an odd count, the sub-medians
(Q1) is 6 for the first subset (5, 6, 7) and the sub-median (Qs) is
31 for the second subset (19, 31, 53). Thus, the interquartile
range (IQR = Q; — Q) is 25. The minimum and maximum
values of the sample space are 5 and 53 respectively. Any data
point that lies 1.5*IQR above the third quartile (upper inner
fence value = (Qs;+(1.5*IQR)), which, for the 3DIGARS
method is (31+(1.5*25) = 68.5), is marked as a suspected
outlier. As the highest data point for 3DIGARS is 53, it is less
than the value of the upper inner fence 68.5. There are no
points in the sample space that fall in upper suspected outliers
range and thus the upper whisker is of 53.

In contrast, for the method dDFIRE, we can see from
Table 1 that the sample points sorted in ascending order are
4,6,7,12, 18 and 78. The median value of the sample space
is 9.5. Again, this splits the data set into two halves, (4, 6, 7)
and (12, 18, 48). Since each half of the data set contains an
odd count, the sub-median (Q)) is 4 for the first subset (4, 6,
7) and the sub-median (Qs) is 18 for the second subset (12,
18, 48). Therefore, the interquartile range (IQR = Q3 - Q1) is
12. The minimum and the maximum values of the sample
space are 4 and 48 respectively. As per the definition of
suspected outliers, any data point that lies 1.5*IQR above the
third quartile (upper inner fence value = (Q;+(1.5*IQR)),

which for dDFIRE method is (18+(1.5*12) = 36) is marked
as an outlier. This discussion implies that the highest data
point 48 is greater than the value of the upper inner fence of
36 and so the data point 48 is marked as a suspected outlier
(see unfilled circle for the method dDFIRE in Fig. 4). The
outliers (unfilled circles) for the rest of the methods, DFIRE,
DFIRE2.0 and RWplus, are also assigned in similar fashion
by the boxplot() function in R.

Additionally, for the ANOVA 1 test, we used the aov()
function in R to test if the means of the energy functions are
statistically significant. The test resulted in the f~value of
0.047 and the p-value of 0.996. As the obtained p-value of
0.996 is greater than confidence level of 0.05, we accept the
null hypothesis of no difference among the mean values of
energy function methods with respect to ANOVA 1.
However, in reality it requires significant efforts to improve
these energy functions and once they are used within various
protein computational methods, they magnify the outcomes,
which may not be reflected at all by ANONA 1.

CONCLUSION

Identifying native proteins from their decoy-sets has
always been a challenging task. While exercising with two
different reference state implementations, RAPDF and
DFIRE, we formulated a better energy function based on the
training dataset, hydrophobic and hydrophilic properties of
the amino acids and their role in 3D structure formation, 3D
values of alpha based on hydrophobic and hydrophilic
residues spatial distributions, and by optimizing the weights
of each of the three combinations along with the z-score for
discriminating the native from the decoys.

The most important contribution we made is the
extension of the concept of ideal gas reference state by
constructing three energy score libraries based on
hydrophobic and hydrophilic residue’s spatial distribution
within protein conformations. Each of the three categories of
residues are given their independent and more appropriate
semi-spherical distribution parameter alphas. Then, we
determine their best values instead of having a single
parameter based gross average interaction model.
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The performance of the training dataset, with sequence
similarity cutoff of 100%, gave consistent results over
several different datasets obtain by varying the parameters.
This indicates that keeping a 100% similar dataset helps us
maintain the natural frequency distributions and helps
develop a better energy function.

We compare the performance of our proposed 3DIGARS
with the state-of-the-art approaches, DFIRE, RWplus,
dDFIRE and DFIRE2.0, using six commonly used decoy
datasets. 3DIGARS is found to be very competitive and
based on the most challenging dataset Rosetta, 3DIGARS
outperforms the nearest competitor by 40.9%.
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