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An important unsolved problem in molecular and structural

biology is the protein folding and structure prediction prob-

lem. One major bottleneck for solving this is the lack of an

accurate energy to discriminate near-native conformations

against other possible conformations. Here we have developed

sDFIRE energy function, which is an optimized linear combina-

tion of DFIRE (the Distance-scaled Finite Ideal gas Reference

state based Energy), the orientation dependent (polar-polar

and polar-nonpolar) statistical potentials, and the matching

scores between predicted and model structural properties

including predicted main-chain torsion angles and solvent

accessible surface area. The weights for these scoring terms

are optimized by three widely used decoy sets consisting of a

total of 134 proteins. Independent tests on CASP8 and CASP9

decoy sets indicate that sDFIRE outperforms other state-of-the-

art energy functions in selecting near native structures and in

the Pearson’s correlation coefficient between the energy score

and structural accuracy of the model (measured by TM-score).
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Introduction

To significantly advance protein structure and protein function

prediction, we need an accurate energy function to describe

water-mediated interactions between amino-acid residues of pro-

teins.[1–4] Although these interactions can be described by quan-

tum mechanical equations,[5,6] their solution is computationally

prohibitive because of large number of atoms associated with a

protein in water. As a result, physical-based, empirical, or

knowledge-based energy functions as well as their combinations

have been proposed as described in several reviews.[1–3,7] This

article focuses on the knowledge-based approach that derives an

effective energy function from known protein structures because

knowledge-based potentials have been more successful in practi-

cal applications of protein structure prediction, in particular.[2]

The key for an accurate energy function is the specificity.

That is, it has to recognize unique protein structure from

nearly infinite number of other possible conformations (decoy

structures). One approach in recent years to improve the spec-

ificity of an energy function is to extract from known protein

structures the orientation dependence and/or multi-body

effect at residue level,[8–14] as well as at all-atom level.[15–19]

For example, Kortemme et al.[18] obtained a knowledge-based

hydrogen-bonding potential. Yang and Zhou incorporated

polar–polar and polar–nonpolar orientation dependence to the

distance-dependent knowledge-based potential based on a

distance-scaled, finite-ideal gas reference (DFIRE) state[20] by

treating polar atoms as a dipole (dDFIRE).[19] Lu et al.[15]

defined side-chain orientation according to rigid blocks of

atoms (OPUS-PSP). Zhang and Zhang[16] employed orientation

angles between two vector pairs predefined for each side-

chain (RWplus). Zhou and Skolnick improved over the DFIRE

energy function by incorporating relative orientation of the

planes associated with each heavy atom (GOAP).[17]

Another approach to improve an energy function is to

employ restraints from accurately predicted structural proper-

ties. For example, the prediction for secondary structure has

obtained an accuracy of more than 80%.[21] The predicted sec-

ondary structure is frequently utilized to limit the conforma-

tional space and thus to increase the accuracy of predicted

protein structure.[22–26] More recently, we found that predicted

torsion angles in real values[27,28] are more effective restraints

for sampling and ab initio structure prediction[29] because

unlike three-state secondary structures, continuous torsion

angles capture non-ideal helical and strand conformations and

provide backbone information on coil residues. Using pre-

dicted secondary structures, solvent accessible surface area

(ASA),[30] and torsion angles was found useful for improving

template-based structure prediction by threading or fold rec-

ognition techniques.[31–35]

The purpose of this work is to examine the usefulness of

employing torsion angles and ASA predicted by SPINE X[21] as

sequence-specific energy terms for discriminating near-native

structures from decoys. More specifically, we will introduce
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energetic terms based on estimated probability of match

between predicted one-dimensional structural properties of a

given sequence and actual structural properties of a given

structure (decoy and near-native). Similar energetic terms have

been found useful in improving template-based structure pre-

diction in SPARKS X.[36] Here, we found that their combinations

with the dDFIRE knowledge-based potential are useful for

improving decoy discrimination in terms of the Pearson’s cor-

relation coefficient between the energy score and model struc-

tural accuracy (measured by TM-score) and selection of near-

native structures.

Materials and Methods

Sequence-specific torsion energy

We define an energy function Es for describing the match

between model torsion angles and predicted torsion angles

from amino acids sequence as below:

Es52RT
X

i

lnPðDsijAAi; SSiÞ (1)

where R is the gas constant, T is the temperature, and PðDsij
AAi; SSiÞ is observed probability (scaled) of the angle error of

prediction (Dsi5si2sPred
i , where sPred

i is the predicted torsion

angle by SPINEX[21]) for a given amino acid type, AAi and pre-

dicted secondary structure, SSi; s is / or w angle from the

model (decoy), and the summation is over all the torsion

angles along the sequence. The probability function PðDsijAAi;

SSiÞ was obtained from a database of 2479 high-resolution

(resolution <3 Å), non-redundant (<25% sequence identity)

proteins that have 500 or less amino acid residues.[36] This

database was employed in training and testing the SPINE X

server.[21] A bin of ten degrees is employed for Dsi, which

resulted in a table of (20 3 3 3 36) or, 2160 entries coming

from 20 different amino-acids, 3 different secondary structures

(coil, sheet and helix) and 36 bins. The probability PðDsijAAi;

SSiÞ in eq. (1) has been computed as the ratio,

NobsðDsi jAAi ;SSiÞ
1
k

P
k NobsðDsijAAi; SSiÞ, where k 5 36 (number of bins) and Nobs

is the observed frequency. Figure 1 shows the sample fre-

quency distribution graphically and the complete tables are

provided in the Supporting Information.

Sequence-specific energy for ASA

Similarly, the sequence-specific energy for ASA, ESA is based on

probability PðDSAijAAiÞ of the prediction error of ASA

(DSAi5SAi2SAPred
i ) for a given amino acid type, AAi from the

decoy or model structure. That is,

ESA52RT
X

i

lnPðDSAijAAiÞ (2)

where the summation is over all residues along the sequence.

The probability function PðDSAijAAiÞ was also obtained from

the database of 2479 proteins.[36]

The dipolar DFIRE statistical potential

The dipolar DFIRE statistical potential,[19] EdDFIRE, is composed

of the terms described below.

EdDFIRE5EDFIRE1EP1 1EP2 1EPN (3)

where, EDFIRE5
P

iju
DFIREðrijÞ with the summation over heavy

atoms i and j, EP1 5
P

pq uðhpjrpqÞ1uðhqjrpqÞ
� �

and EP2 5P
pquðhpqjrpqÞ with the summation over polar atoms p and q

only, and EPN5
P

pnuðhpjrpnÞ with the summation over polar

and nonpolar atoms p and n, respectively. The energy applies

only to heavy atoms belonging to residues that are not

sequence neighbors (ji2jj > 3). hp, hq, and hpq are the angles

between the reference direction of polar atom p, ~r Ref
p and the

distance vector ~r pq, between ~r Ref
p and ~r pq and between ~r Ref

p

and ~r Ref
q , respectively (Fig. 2). Reference vectors of polar atoms

are defined according to bond vectors of heavy atoms.[19] In

addition,

uDFIREðrijÞ5

2RT ln
Nobsði; j; rÞ

r

rcut

� �a Dr

Drcut

� �
Nobsði; j; rcutÞ

; r < rcut

and

0; r � rcut

8>>>>>><
>>>>>>:

uðhjrÞ52RT ln
PobsðhjrÞ

PobsðhjrcutÞ, where Nobsði; j; rÞ is the observed fre-

quency of the atomic pair ði; jÞ with in a distance shell r2 Dr
2

� �
to r1 Dr

2

� �
, Pobs

i;j ðhjrÞ5Nobsði; j; hjrÞ=Nobsði; j; rÞ with h as either

hp, hq, or hpq. The Dr is the width of the bin, which is set

to 0.5 Å uniformly for each bin with the cutoff rcut 5 15.0 Å

and a51:61: This energy function was generated by employ-

ing a database of 3574 structures having resolution less than

2.0 Å and the corresponding sequences are less than 30%

homologous, obtained from the work by Hobohm et al.[37]

Figure 1. Probability distribution of phi angle for a sample amino-acid

(GLU), across the bin for secondary structures: coil, sheet, and helix.
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The sDFIRE energy function

sDFIRE is an optimized combination of the above-mentioned

sequence-specific and dDFIRE energy terms. That is,

EsDFIRE5EDFIRE1w1EP1 1w2EP2 1w3EPN1w4Eu1w5E/1w6ESA (4)

where wi (i51, . . ., 6) are to-be-optimized weights.

Decoy datasets

The weights of sDFIRE were trained with three decoy datasets,

MOULDER, ROSETTA, and I-TASSER datasets. The trained sDFIRE

energy function was tested on the CASP 8 and the CASP 9

datasets. These training and test datasets are discussed in brief

as follows.

MOULDER decoy set comprises of 20 proteins.[38] Each of

these proteins contains �300 comparative models built using

homologous template. The models were built using alignment

that has at least five different alignment positions or in other

words they do not share more than 95% of identically aligned

positions. Comparative protein structure modeling program

called MODELLER-6 is used to build these decoys. MODELLER-

6 program applies default model building routine with fastest

refinement which keeps most of the template structure

unchanged. The decoys developed by MODELLER-6 are differ-

ent from decoys that are generated by ab initio folding in

which all structure regions are reassembled from scratch.

MOULDER decoy sets of 20 proteins were obtained from

http://salilab.org/decoys/.

ROSETTA decoy set is a collection of 58 proteins generated

by Baker-lab. Each of these proteins contains 20 random mod-

els and 100 lowest scoring models from 10,000 decoys gener-

ated using ROSETTA de novo structure prediction followed by

all-atom refinement.[39] Improvement of current Rosetta decoys

over original decoys is based on addition of side chains to the

backbone models and removal of steric clashes. In generating

optimal decoy sets following four important points were con-

sidered[40]: (1) decoy set should contain conformations for a

wide variety of different proteins to overcome the over-fitting

problem, (2) native and decoy structures conformation should

be less than 4 Å root-mean-squared distance, (3) decoys con-

formation should be at least close to local minima of energy

function, and (4) native structure information should not be

used to construct decoys. ROSETTA decoy sets of 58 proteins

are from http://depts.washington.edu/bakerpg/decoys/.

I-TASSER decoy set-II is a collection of 56 proteins.[41] Each

of these proteins contains 300 to 500 decoys. Decoys are gen-

erated using template-based modeling and atomic-level struc-

ture refinements. These decoys are first generated by Monte

Carlo simulations and then refined using GROMACS4.0 molecu-

lar dynamics simulation. GROMACS4.0 simulation is used to

remove steric clashes and improve hydrogen-bonding net-

work. We obtained I-TASSER decoy sets of 56 proteins from

http://zhanglab.ccmb.med.umuch.edu/.

CASP8 and CASP9 decoy sets are used for testing. The 125

proteins of CASP8 decoy sets and 112 proteins of CASP9

decoy-set were downloaded from the CASP8 website http://

predictioncenter.org/casp8/ and CASP9 website http://predic-

tioncenter.org/casp9/ respectively. Most of the structures in

decoy-set are generated by homology modeling by all the

CASP8 and CASP9 servers. A few decoys were discarded as

GOAP failed to process them. Finally, on an average, our test

sets consisted of 278 and 293 decoy-sets per protein of CASP8

and CASP9, respectively. The full list is provided in the Sup-

porting Information.

Searching optimal parameters

We applied search algorithms to obtain the optimal parame-

ters or weights described in eq. (4) with I-TASSER, ROSETTA,

and MOULDER datasets (native structures are excluded). We

used two different ways to cross-validate narrower regions of

the optimal parameters with two separate objectives: to mini-

mize the negative average Pearson’s correlation coefficient

(PCC) of energy score with respect to the TM-score (Template

Modeling score)[42] and to maximize the average TM-score of

the top-1 model ranked by the energy. TM-score is commonly

used to measure similarity between protein structures having

either same or, even different sequence length. TM-score

ranges from (0, 1], where score 1 means perfect match and 0

Figure 2. Graphical representation of orientation angles hp, hq, and hpq. The

vectors rp
!ref and rq

!ref are the reference directions for polar atoms p and

q, respectively.
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indicates no match at all. Practically, score below 0.17 indicates

no similarity whereas with a score higher than 0.5 are assumed

to have the same structural fold.

We applied grid-search (GS) as well as genetic algorithm (GA)

described as follows.

Grid-Search. We implemented GS to find the best possible

values of the six variables (w1;w2;w3;w4;w5;w6) of eq. (4). The

search landscape was too convoluted and time intensive hav-

ing six dimensions. It required us to proceed with search in

two steps: first to use coarse steps and then to go for fine

steps. For the ranges of each variable from 0.01 to 2.0 with

step size 0.01 (fine steps) GS took too long, thus, we went for

the ranges of each variable from 0.05 to 2.0 with coarse incre-

ment factor of 0.05. Then, for the identified potential areas we

went for fine grid steps of 0.01 to identify the best parameter-

values. The best result found from coarse GS with step size

0.05 is shown in Table 1.

Based on the obtained values, for finer search with step-size

0.01, we looked for better values of w1 within range 0.01–0.4,

w2 within range 1.75–2.0, w3 within range 0.03–0.10, w4 within

range 0.03–0.10, w5 within range 0.01–0.4, and w6 within

range 0.01–0.3. The obtained results are placed in Table 2.

Genetic Algorithms. Six weight parameters of eq. (4) were

also optimized by a genetic algorithm search.[43] The GA

parameters were of population-size 200, elite-rate 5%,

crossover-rate 90%, and mutation-rate 50%. The parameter

search stops when there is no improvement.

Because multiple solutions exist with consistently similar

performance from either grid search or genetic algorithms, we

have chosen the weights from the GA because it yields slightly

better performance in our training set (I-TASSER, ROSETTA, and

MOULDER). The final weights are 0.182, 1.351, 0.754, 0.18,

0.018, and 0.45, and the relative importance of the corre-

sponding weights are 0.01037, 0.04262, 0.08504, 0.00023,

0.00006, and 0.00028, respectively. Here, the relative impor-

tance of the weights is obtained by dividing actual weight by

the maximum value found from respective energy term.

Results

Table 3 compares the results from sDFIRE to the other state-

of-art energy functions such as DFIRE, dDFIRE, RWPlus, and

GOAP. In general, sDFIRE shows a better correlation coefficient

(6% improvement over the next best) and a higher average

TM-score for the model selected (4% improvement over the

next best) for all three datasets (I-TASSER, ROSETTA, and

MOULDER). This comparison is for reference only because

these three datasets were employed for training six weighting

parameters in sDFIRE.

For a more reliable comparison, Table 4 compares the per-

formance of various methods on independent CASP 8 and

CASP 9 datasets according to the correlation coefficients

between energy score and model structure accuracy (TM-

score). sDFIRE makes 16.8% to 21.4% improvements for the

CASP8 dataset and 7.4% to 24% improvements for the CASP9

dataset.

Table 1. The best outcome of coarse grid search with the step size 0.05.

Decoy sets (count) sDFIRE w1 w2 w3 w4 w5 w6

I-TASSER (56) 20.526 (0.575)

ROSETTA (58) 20.472 (0.546) 0.20 1.95 0.05 0.05 0.20 0.10

MOULDER (20) 20.915 (0.779)

Legend for the 2nd column: the average correlation coefficient (the

TM-score of the best model).

Table 2. The best outcome of fine grid search with the step size 0.01.

Decoy sets (count) sDFIRE w1 w2 w3 w4 w5 w6

I-TASSER (56) 20.535 (0.581)

ROSETTA (58) 20.472 (0.548) 0.31 1.77 0.03 0.03 0.16 0.08

MOULDER (20) 20.913 (0.779)

Legend for the 2nd column: the average correlation coefficient (the

TM-score of the best model).

Table 3. Performance of several methods in I-TASSER, ROSETTA, and MOULDER datasets.

Decoy sets (no. of proteins) DFIRE dDFIRE RWPlus GOAP sDFIRE

I-TASSER (56) 20.491 (0.575) 20.525 (0.578) 20.488 (0.577) 20.477 (0.567) 20.530 (0.581)

ROSETTA (58) 20.438 (0.509) 20.393 (0.480) 20.444 (0.505) 20.476 (0.511) 20.476 (0.5519)

MOULDER (20) 20.837 (0.749) 20.881 (0.748) 20.840 (0.745) 20.886 (0.771) 20.913 (0.780)

Weighted Average 20.519 (0.605) 20.521 (0.594) 20.521 (0.604) 20.537 (0.607) 20.563 (0.633)

For the 2nd to last columns, each cell legend: the average correlation coefficient (the TM-score of the best model).

Table 4. Performance of several methods on CASP datasets based on correlation coefficients.

Decoy sets (no. of proteins) DFIRE dDFIRE RWPlus[a] GOAP sDFIRE

CASP8 (125) 20.5544 (16.83%) 20.5337 (21.36%) 20.5398 (19.98%) 20.5526 (17.20%) 20.6477

CASP9 (112) 20.5099 (23.53%) 20.5252 (18.60%) 20.5165 (20.60%) 20.580 (7.39%) 20.6229

For the 2nd to last columns, each cell entry legend: correlation coefficients (percentage of improvement by sDFIRE). Best values are highlighted. [a]

RWPlus was optimized on CASP8 datasets.[16]
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Table 5 compares the ability of various methods to locate

the best models from decoys based on the average TM-score.

A small but consistent improvement (1–9%) is observed by

sDFIRE over other methods. It should be noted that GOAP

failed to produce results for many decoys. Tables 4 and 5 rep-

resent a subset of decoys for which all methods can produce

energy scores.

We further examine the validity and robustness of our method

by comparing TM-scores of predicted models for CASP 8 (Fig. 3

(Top)) and CASP 9 (Fig. 3 (Bottom)) proteins against those from

other methods. It is clear from the figures that sDFIRE offers a

substantially improvement over GOAP, DFIRE2, or RWPLUS as the

majority of the points is below the x 5 y line (i.e., the model pre-

dicted by sDFIRE has a higher TM-score than that predicted by

the other method in comparison). The difference is large for a

significant fraction of CASP targets.

Conclusions

We have developed a new energy function, sDFIRE for protein

structure prediction. Unlike most knowledge-based energy func-

tions, sDFIRE incorporates predicted sequence-based structural

properties. Basically, we incorporated evolution-driven proper-

ties through predicted secondary structure and predicted sol-

vent accessible surface areas. We have also accounted for the

orientation-dependent energy components of polar atoms. The

performance of sDFIRE was compared to other state-of-the-art

energy functions based on CASP8 and CASP9 data-sets, which

indicated that 18.18% overall improvements based on average

Pearson’s correlation coefficient between the predicted energy

score and the TM-score of decoy structures.

Keywords: energy function � protein structure � decoy

sets � genetic algorithm � optimization
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