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a b s t r a c t

Protein structure prediction is considered as one of the most challenging and computationally intractable
combinatorial problem. Thus, the efficient modeling of convoluted search space, the clever use of energy
functions, and more importantly, the use of effective sampling algorithms become crucial to address this
problem. For protein structure modeling, an off-lattice model provides limited scopes to exercise and
evaluate the algorithmic developments due to its astronomically large set of data-points. In contrast, an
on-lattice model widens the scopes and permits studying the relatively larger proteins because of its finite
set of data-points. In this work, we took the full advantage of an on-lattice model by using a face-centered-
cube lattice that has the highest packing density with the maximum degree of freedom. We proposed
a graded energy—strategically mixes the Miyazawa–Jernigan (MJ) energy with the hydrophobic-polar
(HP) energy—based genetic algorithm (GA) for conformational search. In our application, we introduced
a 2 × 2 HP energy guided macro-mutation operator within the GA to explore the best possible local
ydrophobic-polar model changes exhaustively. Conversely, the 20 × 20 MJ energy model—the ultimate objective function of our
GA that needs to be minimized—considers the impacts amongst the 20 different amino acids and allow
searching the globally acceptable conformations. On a set of benchmark proteins, our proposed approach
outperformed state-of-the-art approaches in terms of the free energy levels and the root-mean-square
deviations.
. Introduction

Protein folding, by which the primary protein chain with amino
cid residue sequence folds into its characteristics and functional
hree-dimensional (3D) structure in nature, is yet a very complex
hysical process to simulate (Morowitz, 1968; Stouthamer, 1973;
lberts et al., 2002). Once the folded 3D shape is available, it enables
rotein to perform specific tasks for living organisms. Conversely,
isfolded proteins are responsible for various fatal diseases, such

s prion disease, Alzheimer’s disease, Huntington’s disease, Parkin-

on’s disease, diabetes, and cancer (Smith, 2003; Dobson, 2003).
ecause of these, protein structure prediction (PSP) problem has
merged as a very important research problem.
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Homology modeling, threading and ab initio are the broad cat-
egories of available computational approaches. However, while
homologous template is not available, ab initio becomes the only
computation approach, which aims to find the three dimensional
structure of a protein from its primary amino acid sequence alone
such that the total interaction energy among the amino acids is
minimized.

Ab initio computational approach for PSP is a daunting task
(Dodson, 2007) and for modeling the structure on a realistic con-
tinuum space such as off-lattice space is even more daunting.
However, there are several existing off-lattice models such as
Rosetta (Kaufmann et al., 2010), Quark (Xu and Zhang, 2012), I-
TASSER (Lee et al., 2009), and so on which map the structures on the
realistic continuum spaces rather than using discretized on-lattice
spaces and hence, those approaches need to deal with the astro-

nomical data-points incurring heavy computational cost. On-lattice
model on the other hand, (i) due to reduced complexity helps fast
algorithms developments and (ii) widens the scope as well as per-
mits relatively longer protein chains to examine, which is otherwise
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rohibitive (Miyazawa and Jernigan, 1985; Berrera et al., 2003; Lau
nd Dill, 1989; Cooper et al., 2010; Das and Baker, 2008; Wroe et al.,
005). The computed on-lattice fold can be translated to off-lattice
pace via hierarchical approaches to provide output in real-space
Hoque et al., 2005, 2010, 2011; Iqbal et al., 2015). The Monte Carlo
MC) or, Conformational Space Annealing (CSA) used in Rosetta can
e replaced with better algorithm developed using on-lattice mod-
ls (Hoque et al., 2005, 2010, 2011). For instance, we embedded
ne of our previous on-lattice algorithm (Hoque et al., 2011) within
osetta and the embedded algorithm improved (Higgs et al., 2012a)
he average RMSD by 9.5% and average TM-Score by 17.36% over
he core Rosetta (Kaufmann et al., 2010). Similarly, the embedded
lgorithm also outperformed (Higgs et al., 2012a) I-TASSER (Lee
t al., 2009). These improvements motivated us further developing
uperior algorithms using on-lattice models.

The two most important building blocks of an ab initio PSP are (i)
n accurate (computable) energy function (Iqbal et al., 2015) and (ii)
n effective search or sampling algorithm. For a simplified model
ased PSP, it is possible to compute the lower bound (Giaquinta
nd Pozzi, 2013). It is also possible to know what would be the
est score and hence the native score of a sequence by exhaustive
numeration (Unger and Moult, 1993a; Lesh et al., 2003) (which is
easible to compute for smaller sequences only). Even though, there
xists no efficient sampling algorithm yet that can conveniently
btain the known final structure starting from a random structure
or all possible available cases (Hoque et al., 2005, 2007a). There-
ore, a number of efforts are being made, such as, different types
f meta-heuristics have been used in solving the on lattice PSP
roblems. These include Monte Carlo Simulation (Thachuk et al.,
007), Simulated Annealing (Tantar et al., 2008), Genetic Algo-
ithms (GA) (Hoque et al., 2005, 2007a; Unger and Moult, 1993b;
oque, 2008), Tabu Search with GA (Böckenhauer et al., 2008), GA
ith twin-removal operator (Hoque et al., 2011), Tabu Search with
ill Climbing (Klau et al., 2002), Ant Colony Optimization (Blum,
005), Particle Swarm Optimization (Kondov and Berlich, 2011;
ansour et al., 2012), Immune Algorithms (Cutello et al., 2007),

abu-based Stochastic Local Search (Cebrián et al., 2008; Shatabda
t al., 2012), Firefly Algorithm (Maher et al., 2014), and Constraint
rogramming (Mann et al., 2008; Dotú et al., 2011).

Krasnogor et al. (2002) applied HP model for PSP problem using
he square, triangular, and diamond lattices and further extended
heir work applying fuzzy-logic (Pelta and Krasnogor, 2005). Islam
t al. further improved the performance of memetic algorithms
n a series of work (Islam, 2011; Islam and Chetty, 2009; Islam
t al., 2011c,a) for the simplified PSP models. They also proposed
clustered architecture for the memetic algorithm with a scal-

ble niching technique (Islam and Chetty, 2010, 2013; Islam et al.,
011b) for PSP. However, using 3D FCC lattice points, the recent
tate-of-the-art results for the HP energy model have been achieved
y genetic algorithms (Rashid et al., 2012a; Shatabda et al., 2013b),

ocal search approaches (Shatabda et al., 2012; Rashid et al., 2013c),
local search embedded GA (Rashid et al., 2013a), and a multi-

oint parallel local search approach (Rashid et al., 2013b). Kern
nd Liao (2013) applied hydrophobic-core guided genetic opera-
or for efficient searching on HP, HPNX and hHPNX lattice models.
everal approaches towards the 20 × 20 energy model include a
onstraint programming technique used in Dal Palù et al. (2004,
005) by to predict tertiary structures of real proteins using sec-
ndary structure information, a fragment assembly method (Dal
alù et al., 2011) to optimize protein structures. Among other suc-
essful approaches, a population based local search (Kapsokalivas
t al., 2009) and a population based genetic algorithm (Torres et al.,
007) are found in the literature that applied empirical energy

unctions.

In a hybrid approach, Ullah and Steinhöfel (2010) applied
constraint programming based large neighborhood search
and Chemistry 61 (2016) 162–177 163

technique on top of the output of COLA (Dal Palù et al., 2007) solver.
The hybrid approach produced the state-of-the-art results for sev-
eral small sized (less than 75 amino acids) benchmark proteins.
In another work, Ullah et al. (2009) proposed a two stage opti-
mization approach combining constraint programming and local
search using Berrera et al. (Berrera et al., 2003) deduced 20 × 20
energy matrix (we denote this model as BM). In a recent work,
Shatabda et al. (2013a) presented a mixed heuristic local search
algorithm for PSP and produced the state-of-the-art results using
the BM model on 3D FCC lattice. Although the heuristics them-
selves are weaker than the BM energy model, their collective use
in the random mixing fashion produce results better than the BM
energy itself. In a previous work (Rashid et al., 2013d), we applied
BM and HP energy models in a mixed manner within a GA frame-
work and showed that hybridizing energies performs better than
their individual performances.

In this work, we propose a graded as well as hybrid energy func-
tion with a genetic algorithm (GA) based sampling to develop an
effective ab initio PSP tool. The graded energy-model strategically
mixes 20 × 20 Miyazawa–Jernigan (MJ) contact-energy (Miyazawa
and Jernigan, 1985; Berrera et al., 2003) with the simple 2 × 2
hydrophobic-polar (HP) contact-energy model (Lau and Dill, 1989),
denoted as MH (MJ + HP → MH) in this paper. Specifically, we pro-
pose a hydrophobic-polar categorization of the HP model within
a hydrophobic-core directed macro-mutation operator to explore
the local benefits exhaustively while the GA sampling is guided
by the MJ energy Matrix globally. While the fine grained details of
the high resolution interaction energy matrix can become compu-
tationally prohibit, a low resolution energy model may effectively
sample the search-space towards certain promising directions par-
ticularly emphasizing on the pair-wise contributions with large
magnitudes—which we have implementation strategically via a
macro mutation. Further, we use an enhanced genetic algorithm
(GA) framework (Rashid et al., 2012a) for protein structure opti-
mization on 3D face-centered-cube (FCC) lattice model. Prediction
in the FCC lattice model can yield the densest protein core (Hoque
et al., 2005) and the FCC lattice model can provide the maximum
degree of freedom as well as the closest resemblance to the real or,
high resolution folding within the lattice constraint. FCC orienta-
tion can therefore align a real protein into the closest conformation
amongst the available lattice configurations (Hoque et al., 2007a).

On a set of standard benchmark proteins, our MH model guided
GA, named as MH GeneticAlgorithm (MH GA), shows significant
improvements in terms of interaction energies and root-mean-
square deviations in comparison to the state-of-the-art search
approaches (Ullah and Steinhöfel, 2010; Shatabda et al., 2013a;
Torres et al., 2007) for the lattice based PSP models. For a fair
comparison, we run Ullah and Steinhöfel (2010) and Shatabda
et al. (2013a) using MJ energy model and in the result section,
we compare our experimental results with the results produced
by Ullah and Steinhöfel (2010) and Shatabda et al. (2013a). Further,
we present an experimental analysis showing the effectiveness of
using the hydrophobic polar categorization of the HP model to
direct macro-mutation operation.

2. Background

Anfinsen’s hypothesis (Anfinsen, 1973) and Levinthal’s paradox
(Levinthal, 1968) form the basis and the confidence of the ab ini-
tio approach, which inform that the protein structure prediction
can be relied only on the amino acid sequence of the target pro-
the native fold. Thus, we set our goal to model the folding process
using on-lattice model. Further, it has been argued in Alm and Baker
(1999) and Baker (2000), “. . . protein folding mechanisms and
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Fig. 1. A 3-dimensional face-centered-cubic lattice space. The 12 basis vectors of
the neighbors of the origin (0, 0, 0) in a Cartesian coordinate system (Rashid et al.,
2015).

Table 1
The 2 × 2 HP energy model.
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omes.

.1. Simplified model

In our simplified model, we use 3D FCC lattice points to map the
mino acids of a protein sequence. In the mapping, each amino acid
f the sequence, occupies a point on the lattice to form a continu-
us chain of a self-avoiding-walk. We apply the MJ energy matrix
n conjunction with the HP energy model in a genetic algorithm
ramework for PSP. The FCC lattice, the HP and MJ energy models,
nd the GA are briefly described below.

.1.1. FCC lattice
The FCC lattice has the highest packing density compared to

he other existing lattices (Hales, 2005). Thus, FCC model can
rovide maximum degree of freedom within a constrained space.

n FCC, each lattice point (the origin in Fig. 1) has 12 neigh-
ors with closest possible distance having 12 basis vectors as
ollows:

v1 = (1,1,0) v4 = (−1,−1,0) v7 = (−1,1,0) v10 = (0,1,−1)

v2 = (1,0,1) v5 = (−1,0,−1) v8 = (1,−1,0) v11 = (1,0,−1)

v3 = (0,1,1) v6 = (0,−1,−1) v9 = (−1,0,1) v12 = (0,−1,1)

In simplified PSP, conformations are mapped on the lattice by a
equence of basis vectors, or by the relative vectors that are relative
o the previous basis vectors in the sequence.

.1.2. HP energy model
Based on the hydrophobic property, the 20 amino acids which

re the constituents of all proteins, are broadly divided into two cat-
gories: (a) hydrophobic amino acids (Gly, Ala, Pro, Val, Leu, Ile, Met,

he, Tyr, Trp) are denoted as H; and (b) hydrophilic or polar amino
cids (Ser, Thr, Cys, Asn, Gln, Lys, His, Arg, Asp, Glu) are denoted as P. In
he 2 × 2 HP model (Lau and Dill, 1989), when two non-consecutive
ydrophobic amino acids become topologically neighbors, they
Fig. 4. Typical mutation operator: mutating one point into some other point.

contribute a certain amount of negative energy, which for simplic-
ity is considered as −1 (Table 1). The total energy EHP (Eq. (1)) of a
conformation based on the HP model becomes the sum of the con-
tributions over all pairs of the non-consecutive hydrophobic amino
acids (Fig. 2a).

EHP =
∑
i<j−1

cij × eij (1)

where cij = 1 if amino acids at positions i and j in the sequence are
non-consecutive but topological neighbors on the lattice, other-
wise cij = 0. The eij = −1 if the ith and jth amino acids are both
hydrophobic, otherwise eij = 0.

2.1.3. MJ energy model
By analyzing crystallized protein structures, Miyazawa and

Jernigan (1985) statistically deduced a 20 × 20 energy matrix (bet-
ter known as MJ energy model) that considers residue contact
propensities between the amino acids. BM is a similar energy
matrix as MJ deduced by Berrera et al. (Berrera et al. (2003)) by
calculating empirical contact energies on the basis of information
available from a set of selected protein structures and following
the quasi-chemical approximation. In this work, we use MJ energy
model. The total energy EMJ (Eq. (2)) of a conformation based on
the MJ energy model is the sum of the contributions of all of the
non-consecutive amino acid pairs that are topological neighbors
(Fig. 2b).

EMJ =
∑
i<j−1

cij × eij (2)

where cij = 1 if amino acids at positions i and j in the sequence
are non-consecutive neighbors on the lattice, otherwise cij = 0;
and eij is the empirical energy value between the ith and jth
amino acid pair specified in the MJ energy matrix as shown in
Table 2.

2.2. Genetic algorithms

GAs (Holland, 1975) are a family of population-based search
algorithms which can be applied for PSP as an optimization prob-

lem. The outline of GA as given in Algorithm 1, follows simple steps:
Line 1 initializes the population; the Line 2 evaluates the solutions
to rank them by relative quality; and the Lines 4–7 are repeating
on generating, evaluating and replacing the least-fitted off-springs
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ithin the population until the termination criteria arises. For the
oding scheme, non-isomorphic encoding (Hoque et al., 2006) has
een applied and the v1, . . ., v12 (in Fig. 1) can be thought of be
enamed as a, . . ., l respectively.

A typical crossover operator randomly splits two solutions at
randomly selected crossover point and exchanges the parts

etween them (Fig. 3) and a typical mutation operator alters a solu-
ion at a random point (Fig. 4). In the case of PSP, conformations are
egarded as solutions of a GA population.

. Methods

This section describes the proposed MH GA framework along
ith the implementation level detail. We implemented the frame-
ork in Java (J2EE), using Rocks clusters. The code for MH based GA

s freely available online.1

.1. The primitive operators implemented in the GA framework

The primitive operators that we implemented within the
H GA framework are crossover (Fig. 5a), rotation mutation

Fig. 5b), diagonal move (Fig. 5c), pull moves (Fig. 5d), and tilt moves
Fig. 5e). The Rotation, diagonal move, pull moves and tilt moves
re implemented as mutation operators.

. Crossover: At a given crossover point (dotted circle in (Fig. 5a),

two parent conformations exchange their parts and generate
two children. The success rate of crossover operator decreases
with the increase of the compactness of the structure.

1 Download the JAR file from: http://cs.uno.edu/ tamjid/Software/MH GA/
arFiles.zip.
and Chemistry 61 (2016) 162–177

2. Rotation: One part of a given conformation is rotated around
a selected point (Fig. 5b). This move is mostly effective at the
beginning of the search.

3. Diagonal move: Given three consecutive amino acids at lattice
points A, B, and C, a diagonal move at position B takes the corre-
sponding amino acid diagonally to a free position (Fig. 5c). The
diagonal moves are very effective on FCC lattice (Cebrián et al.,
2008; Dotú et al., 2011) points.

4. Pull moves: The amino acids at points A and B are pulled to the
free points (Fig. 5d) and the connected amino acids are pulled
as well to get a valid conformation. The pull moves (Lesh et al.,
2003) are local, complete, and reversible. These are very effective
especially when the conformation is compact.

5. Tilt moves: Two or more consecutive amino acids connected in
a straight line are moved by a tilt move to immediately parallel
lattice positions (Hoque, 2008). The tilt-moves pull the confor-
mation from both sides until a valid conformation is found. In
Fig. 5e, the amino acids at points C and D are moved and subse-
quently other amino acids from both sides are moved as well.

3.2. Genetic algorithm framework

The pseudocode of MH GA framework is presented in Algorithm
2. It uses a set of primitive operators Fig. 5) in an exhaustive genera-
tion approach to diversify the search, a hydrophobic core-directed
macro-mutation operator to intensify the search, and a random-
walk algorithm to recover from the stagnation. Like other search
algorithms, it requires initializing the population and the solutions
need to be evaluated in each iteration.

http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
http://cs.uno.edu/~tamjid/Software/MH_GA/JarFiles.zip
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Fig. 5. The primitive operators used in our genetic algorithms. The crossover operator applied on two parent conformations to exchange their parts to generate two child
conformations (as shown in a) and the mutation operators are applied on single conformation to generate single child conformation (as shown in b–e). The operators are
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mplemented in 3D space, however, for simplification and easy understanding the fi
cids and others are polar.

The algorithm initializes (Algorithm 2: Line 7) the current pop-
lation with randomly generated individuals. At each generation,

t selects a genetic operator based on a given probability distribu-
ion to use through the generation (Algorithm 2: Line 9). In fact,
e select the operators randomly by giving equal opportunities

o all operators. The selected operator is used in an exhaustive
anner (Algorithm 2: Lines 11–12 or Lines 14–16) to obtain all

onformations in the new population. We ensure that no duplicate

onformation is added to the new population. The add() method
Line 12 or 16 in Algorithm 2) takes care of adding the non-duplicate
onformations to the new population. For a given number of gen-
rations, if the best conformation in the new population is not
are presented in 2D space. The black solid circles represent the hydrophobic amino

better than the best in the current population, our algorithm trigg-
ers a random-walk technique (Algorithm 2: Line 18) to diversify
the new population. Nevertheless, after each generation, the new
population becomes the current population (Algorithm 2: Line 19);
and the search continues. Finally, the best conformation found
so far is returned (Algorithm 2: Line 20). Along with MJ poten-
tial matrix, the HP energy model is used during move selection
by the macro-mutation operator. The macro-mutation operator

is used as other mutation operators Fig. 5b–e) in MH GA. The
details of initialization, evaluation of fitness, exhaustive generation,
macro-mutation and stagnation recovery schemes are presented
below.
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For mutation operators, MH GA adds one resultant conformation
to the new population that corresponds to each conformation in
the current population. Operators are applied to all possible point
68 M.A. Rashid et al. / Computational B

.2.1. Initialization
Our algorithm starts with a feasible set of conformation known

s population. We generate initial conformations following a self-
voiding walk on FCC lattice points. The pseudocode of the algorithm
s presented in Algorithm 3. It places the first amino acid at (0, 0, 0).
t then randomly selects a basis vector to place the successive amino
cid at a neighboring free lattice point. The mapping proceeds until
self-avoiding walk is found for the whole protein sequence.

.2.2. Evaluate the fitness
For each iteration, the conformation is evaluated by calculat-

ng the contacts (topological neighbor) potentials where the two
mino acids are non-consecutive. The pseudo-code in Algorithm 4
resents the algorithm for calculating the interaction energy of a
iven conformation. The contact potentials are found in MJ poten-
ial matrix (Miyazawa and Jernigan, 1985) (see Table 2).
and Chemistry 61 (2016) 162–177

3.2.3. Exhaustive generation
Unlike standard genetic algorithm, in MH GA, the randomness is

reduced significantly by applying exhaustive generation approach.
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Algorithm 5) exhaustively until finding a better solution than the
arent. If no better solution is found, the parent survives through
he next generation. On the other hand, for crossover operators,
wo resultant conformations are added to the new population from
wo randomly selected parent conformations. Crossover operators
enerate child conformations by applying the crossover operator
n all possible points (Algorithm 6) on two randomly selected
arents. The best two conformations from the parents and the
hildren are then become the resultant conformations for the next
eneration.
and Chemistry 61 (2016) 162–177 169

3.2.4. Macro-mutation operator
Protein structures have hydrophobic cores (H-core) that hide

the hydrophobic amino acids from water and expose the polar
amino acids to the surface to be in contact with the surrounding
water molecules (Yue and Dill, 1993). H-core formation is an
important objective of HP based PSP. Macro-mutation operator is
a composite operator (Fig. 6) that uses a series of diagonal-moves
(Fig. 5c) on a given conformation to build the H-core around the
hydrophobic-core-center (HCC). The macro-mutation squeezes
the conformation and quickly forms the H-core. In MH GA, macro-
mutation is used as other mutation operators. Algorithm 7 presents
the pseudocode of macro-mutation algorithm.
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Fig. 6. A macro-mutation operator repeatedly used diagonal moves. The moves of
an amino acid are guided by the distance of current position (d1) and the distance
o
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f target position (d2) from the HCC. The operator is implemented in 3D space,
owever, for simplification and easy understanding, the figures are drawn in 2D
pace.

In macro-mutation, the HCC is calculated by finding arithmetic
eans of x, y, and z coordinates of all H amino acids. In macro-
utation, for a given number of iterations, diagonal moves apply

epeatedly either at each P- or at each H-type amino acid positions.
hether to apply the diagonal move on P- or H-type amino acids

s determined by using a Bernoulli distribution (Algorithm 7: Line
) with probability p (intuitively we use p = 20% for P-type amino
cids). For a P-type amino acid, the first successful diagonal move is
onsidered. However, for a H-type amino acid, the first successful
iagonal move that does not increase the Cartesian distance of the
mino acid from the HCC is taken. All the amino acids are traversed
nd the successful moves are applied as one composite move.

.3. Stagnation recovery

Like other search algorithm, GA can get stuck in the local min-
ma or, can be stalled. Stall condition can occur when similarities

ith the chromosomes in GA increases heavily and the operators

re unable to produce better diverse solutions. Further, with the
SP search, resulting solutions become phenotypically compact
hich reduce the likelihood of producing better solution from the
opulation due to harder self-avoid-walk (SAW) constraints (Higgs
and Chemistry 61 (2016) 162–177

et al., 2012b; Hoque et al., 2007b, 2011). It would rather require
very intelligent moves to reform into another competitive com-
pact SAW. To deal with such situation, we apply the following two
actions:

3.3.1. Removing duplicates
In genetic algorithm it has been observed that with increasing

generations, the similarity among the individuals within the popu-
lation increases. In worst case scenario, all the individuals become
similar and forces the search to stall in the local minima. In our
approach, we remove duplicates from each generation to maintain
the diversity of the population. During exhaustive generation, we
check the existence of the newly generated child in the new popu-
lation. If it does not exist then the new solution is added to the new
population list. Our approach reduces the frequency of stagnations.

3.3.2. Applying random-walk
Sometimes, early convergence leads the search towards the

stagnation situation. In the HP energy model, premature H-cores
are observed at local minima. To break these H-cores, in MH GA
(Algorithm 2: Line 18), a random-walk algorithm (Algorithm 8) is
applied. This algorithm uses pull moves (Lesh et al., 2003) (as shown
in Fig. 5d) to break the H-core. We use pull-moves because they are
complete, local, and reversible. Successful pull moves never gen-
erate infeasible conformations. During pulling, energy level and
structural diversification are observed to maintain balance among
these two. We allow energy level to change within 5–10% that
changes the structure from 10% to 75% of the original. We try to
accept the conformation that is close to the current conformation
in terms of the energy level but as far as possible in structural diver-
sity, and which is determined by the function checkDiversity() in
Algorithm 8 at Line 5. For genetic algorithm, random-walk is very
effective (Rashid et al., 2012b) to recover from stagnation.

The complete flow of MH GeneticAlgorithm (Algorithm: 2) is
graphically presented in Fig. 7. Further, it describes the steps taken
within macro mutation procedure (Algorithm: 7).

4. Performance evaluation
To compare and evaluate the performance of the proposed PSP
predictor with respect to the state-of-the-art approaches, we used
the measures Relative Improvement (RI) and RMSD comparisons.
They are defined below:
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Fig. 7. A complete overview of our algorithmic approach. The macro-mutation procedure is described step by step (inside the blue box). The procedural sub blocks are marked in bold along with the corresponding labels of the
algorithms described above. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
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.1. Relative Improvement (RI)

The difficulty to improve energy level is increased as the pre-
icted energy level approaches to a known lower bound of a given
rotein. For example, if the lower bound of free energy of a pro-
ein is −100, the efforts to improve energy level from −80 to −85
s much less than that to improve energy level from −95 to −100
hough the change in energy is the same (−5). The RI computes the
elative improvements that our algorithm (target,t) achieved w.r.t.
he state-of-the-art approaches (reference, r).

For each protein, the relative improvement of the target (t) w.r.t.
he reference (r) is calculated using the formula in Eq. (3), where
t and Er denote the average energy values achieved by target and
eference respectively.

I = Et − Er
Er

× 100% (3)

.2. RMSD comparison

The root mean square deviation (RMSD) is frequently used to
easure the differences between values predicted by a model and

he values actually observed. We compare the predicted structures
btained by our approach with the state-of-the-art approaches by
easuring the root-mean-square w.r.t. the native structures from

DB. For any given structure the root-mean-square is calculated
sing Eq. (4),

MSD =

√∑n−1
i=1

∑n
j=i+1(dp

ij
− dn

ij
)
2

n× (n− 1)/2
(4)

here dp
ij

and dn
ij

denote the distances between ith and jth amino
cids respectively in the predicted structure and the native struc-
ure of the protein. The average distance between two ˛-carbons
n native structure is 3.8Å. To calculate root-mean-square, the dis-
ance between two neighbor lattice points is considered as 3.8Å.

. Results and discussion

In this section, we discuss the obtained results along with
he comparison of the performance of MH GeneticAlgorithm with
he other state-of-the-art results (Torres et al., 2007; Ullah and
teinhöfel, 2010; Shatabda et al., 2013a). Further, we present an
nalysis of the results.

.1. Benchmark

In our experiment, the protein instances are taken from the liter-
tures. The first seven proteins (4RXN, 1ENH, 4PTI, 2IGD, 1YPA, 1R69,
nd 1CTF) in Table 3 are taken from Ullah and Steinhöfel (2010) and
hatabda et al. (2013a), and the next five proteins (3MX7, 3NBM,
MQO, 3MRO, and 3PNX) are taken from Shatabda et al. (2013a). The
wo other protein instances in Table 5 (2J61 and 2HFQ) are taken
rom Torres et al. (2007).

.2. Comparing with the state-of-the-art

In the literature we found very few works (Kapsokalivas et al.,
009; Torres et al., 2007) that used 20 × 20 MJ potential-matrix
Miyazawa and Jernigan, 1985) for protein structure prediction on
D FCC lattice. However, Torres et al. (2007) used 3D HCP lat-
ice and Kapsokalivas et al. (2009) used 3D cubic lattice in their

orks for protein mapping. In other works, Ullah and Steinhöfel

2010) and Shatabda et al. (2013a) used 3D FCC lattice with 20 × 20
mpirical energy matrix by Berrera et al. (2003). In fact, we do
ot have any state-of-the-art results available for similar model
and Chemistry 61 (2016) 162–177

to compare free energy level in a straight way. Therefore, we ran
the algorithms used in Ullah and Steinhöfel (2010) and Shatabda
et al. (2013a) using the MJ energy model (Miyazawa and Jernigan,
1985) to compare our results. However, the constraint program-
ming based hybrid approach (Ullah and Steinhöfel, 2010) failed to
get any solution for most of the large-sized proteins. In such cases,
in Table 4, the results are denoted by n/a.

In Table 4, we present interaction energy values in two differ-
ent formats: the global lowest interaction energy (Column Best)
and the average (Column Avg) of the lowest interaction energies
obtained from 50 different runs. In case of the global best energy,
our approach outperforms the state-of-the-art approaches in Ullah
and Steinhöfel (2010) and Shatabda et al. (2013a) on 9 out of
12 benchmark proteins. However, in case of average energy, our
approach outperforms both of the approaches on 10 out of 12
benchmark proteins. Based on the experimental results, the per-
formance hierarchy of the approaches used to validate our MH GA
is shown in Fig. 8.

5.2.1. Outcome based on Relative Improvement (RI)
From the Column RI of Table 4, we see that for 2 proteins our

GA fail to improve over the state-of-the-art. However, for other 10
proteins it improves the average interaction energy level ranging
from 0.10% to 26.58% for different proteins.

Further, in Table 5, we present another two benchmark proteins
taken from a GA based approach (Torres et al., 2007). From the
authors of Torres et al. (2007), we tried to get their implemented
codes so that we can run that by ourselves. However, we failed to
receive any response from the authors. Therefore, we present the
reported values. For fair comparison, we compare the results by
generation-wise instead of by running-time.

5.2.2. Outcome based on RMSD comparison
We calculate RMSD of a structure that corresponds to the lowest

MJ interaction energy for a particular run. The reported RMSD val-
ues in Table 6 are the global minimum of 50 runs. In Tables 5 and 6,
the bold-faced RMSD values indicate the winners for the corre-
sponding proteins.

In Table 7, we present corresponding MJ energy values for global
minimum RMSD and corresponding RMSD values for global mini-
mum MJ energy values over 50 runs for each proteins on identical
settings. The experimental results show that the global minimum
energy in our experiment does not produce minimum RMSD value.

5.3. Result analysis

The MJ energy model actually implicitly bear the characteris-
tic of hydrophobicity. The matrix values present some variations
within amino acids of the same class (H or P). A partition algorithm
such as 2-means clustering algorithm easily reveals the H–P parti-
tioning within the MJ model. Given this knowledge, we study the
effect of explicitly using hydrophobic property within our GA.

5.3.1. Effect of HP in MH model
Our macro-mutation operator biases the search towards a

hydrophobic core by applying a series of diagonal moves and thus
achieves improvements in terms of MJ energy values of the out-
put conformations. We implemented three different versions of our
genetic algorithm.

1. MH: This version is our final algorithm that we described in

detail, and used in presenting our main results in Table 4 and
in comparing with the state-of-the-art results. To reiterate, this
version uses the MJ energy model for search and energy repor-
ting, and hydrophobicity knowledge in the macro-mutation
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Table 3
The benchmark proteins used in our experiments.

ID Len Protein sequence

4RXN 54 MKKYTCTVCGYIYNPEDGDPDNGVNPGTDFKDIPDDWVCPLCGVGKDQFEEVEE

1ENH 54 RPRTAFSSEQLARLKREFNENRYLTERRRQQLSSELGLNEAQIKIWFQNKRAKI

4PTI 58 RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

2IGD 61 MTPAVTTYKLVINGKTLKGETTTKAVDAETAEKAFKQYANDNGVDGVWTYDDATKTFTVTE

1YPA 64 MKTEWPELVGKAVAAAKKVILQDKPEAQIIVLPVGTIVTMEYRIDRVRLFVDKLDNIAQVPRVG

1R69 69 SISSRVKSKRIQLGLNQAELAQKVGTTQQSIEQLENGKTKRPRFLPELASALGVSVDWLLNGTSDSNVR

1CTF 74 AAEEKTEFDVILKAAGANKVAVIKAVRGATGLGLKEAKDLVESAPAALKEGVSKDDAEALKKALEEAGAEVEVK

3MX7 90 MTDLVAVWDVALSDGVHKIEFEHGTTSGKRVVYVDGKEEIRKEWMFKLVGKETFYVGAAKTKATINIDAISGFA YEYTLEINGKSLKKYM

3NBM 108 SNASKELKVLVLCAGSGTSAQLANAINEGANLTEVRVIANSGAYGAHYDIMGVYDLIILAPQVRSYYREMKVDA

ERLGIQIVATRGMEYIHLTKSPSKALQFVLEHYQ

3MQO 120 PAIDYKTAFHLAPIGLVLSRDRVIEDCNDELAAIFRCARADLIGRSFEVLYPSSDEFERIGERISPVMIAHGSY

ADDRIMKRAGGELFWCHVTGRALDRTAPLAAGVWTFEDLSATRRVA

3MRO 142 SNALSASEERFQLAVSGASAGLWDWNPKTGAMYLSPHFKKIMGYEDHELPDEITGHRESIHPDDRARVLAALKA

HLEHRDTYDVEYRVRTRSGDFRWIQSRGQALWNSAGEPYRMVGWIMDVTDRKRDEDALRVSREELRRL

3PNX 160 GMENKKMNLLLFSGDYDKALASLIIANAAREMEIEVTIFCAFWGLLLLRDPEKASQEDKSLYEQAFSSLTPREA

EELPLSKMNLGGIGKKMLLEMMKEEKAPKLSDLLSGARKKEVKFYACQLSVEIMGFKKEELFPEVQIMDVKEYL KNALESDLQLFI

2J6A 135 MKFLTTNFLKCSVKACDTSNDNFPLQYDGSKCQLVQDESIEFNPEFLLNIVDRVDWPAVLTVAAELGNNALPPT

KPSFPSSIQELTDDDMAILNDLHTLLLQTSIAEGEMKCRNCGHIYYIKNGIPNLLLPPHLV

2HFQ 85 MQIHVYDTYVKAKDGHVMHFDVFTDVRDDKKAIEFAKQWLSSIGEEGATVTSEECRFCHSQKAPDEVIEAIKQN GYFIYKMEGCN

3MSE 180 GISPNVLNNMKSYMKHSNIRNIIINIMAHELSVINNHIKYINELFYKLDTNHNGSLSHREIYTVLASVGIKKWD

INRILQALDINDRGNITYTEFMAGCYRWKNIESTFLKAAFNKIDKDEDGYISKSDIVSLVHDKVLDNNDIDNFF

LSVHSIKKGIPREHIINKISFQEFKDYMLSTF

3MR7 189 SNAERRLCAILAADMAGYSRLMERNETDVLNRQKLYRRELIDPAIAQAGGQIVKTTGDGMLARFDTAQAALRCA

LEIQQAMQQREEDTPRKERIQYRIGINIGDIVLEDGDIFGDAVNVAARLEAISEPGAICVSDIVHQITQDRVSE

PFTDLGLQKVKNITRPIRVWQWVPDADRDQSHDPQPSHVQH

3MQZ 215 SNAMSVQTIERLQDYLLPEWVSIFDIADFSGRMLRIRGDIRPALLRLASRLAELLNESPGPRPWYPHVASHMRRR

VNPPPETWLALGPEKRGYKSYAHSGVFIGGRGLSVRFILKDEAIEERKNLGRWMSRSGPAFEQWKKKVGDLRDFG

PVHDDPMADPPKVEWDPRVFGERLGSLKSASLDIGFRVTFDTSLAGIVKTIRTFDLLYAEAEKGS

3NO3 238 GKDNTKVIAHRGYWKTEGSAQNSIRSLERASEIGAYGSEFDVHLTADNVLVVYHDNDIQGKHIQSCTYDELKDLQ

LSNGEKLPTLEQYLKRAKKLKNIRLIFELKSHDTPERNRDAARLSVQMVKRMKLAKRTDYISFNMDACKEFIRLC

PKSEVSYLNGELSPMELKELGFTGLDYHYKVLQSHPDWVKDCKVLGMTSNVWTVDDPKLMEEMIDMGVDFITTDL PEETQKILHSRAQ

3NO7 248 MGSDKIHHHHHHENLYFQGMTFSKELREASRPIIDDIYNDGFIQDLLAGKLSNQAVRQYLRADASYLKEFTNIYA

MLIPKMSSMEDVKFLVEQIEFMLEGEVEAHEVLADFINEPYEEIVKEKVWPPSGDHYIKHMYFNAFARENAAFTI

AAMAPCPYVYAVIGKRAMEDPKLNKESVTSKWFQFYSTEMDELVDVFDQLMDRLTKHCSETEKKEIKENFLQSTI

HERHFFNMAYINEKWEYGGNNNE

3ON7 280 GMKLETIDYRAADSAKRFVESLRETGFGVLSNHPIDKELVERIYTEWQAFFNSEAKNEFMFNRETHDGFFPASIS

ETAKGHTVKDIKEYYHVYPWGRIPDSLRANILAYYEKANTLASELLEWIETYSPDEIKAKFSIPLPEMIANSHKT

LLRILHYPPMTGDEEMGAIRAAAHEDINLITVLPTANEPGLQVKAKDGSWLDVPSDFGNIIINIGDMLQEASDGY

FPSTSHRVINPEGTDKTKSRISLPLFLHPHPSVVLSERYTADSYLMERLRELGVL

Table 4
The energy values are obtained from different algorithms for the specified energy models. The average values are calculated over 50 different runs. The bold-faced values
indicate the winner (the lower the better).

Protein details The state-of-the-art Our approach

Hybrid (Ullah and
Steinhöfel, 2010)

Local Search (Shatabda
et al., 2013a)

The MH GA

MJ energy Time MJ energy Time MJ energy Time RI

Seq Size H Best Avg Avg Best Avg(r) Avg Best Avg(t) Avg Over (Shatabda
et al., 2013a)

4RXN 54 27 −32.61 −30.94 1:02:12 −33.33 −31.21 −36.36 −33.60 7.66%
1ENH 54 19 −35.81 −35.07 1:02:03 −29.03 −28.18 −38.39 −35.67 26.58%
4PTI 58 32 −32.07 −29.37 1:01:26 −31.16 −28.33 −35.65 −31.01 9.46%
2IGD 61 25 −38.64 −32.54 1:43:08 −32.36 −28.29 1:00:00 −36.49 −33.75 1:00:00 19.30%
1YPA 64 38 n/a n/a −33.33 −32.15 −40.14 −36.33 13.00%
1R69 69 30 −34.2 −31.85 1:07:32 −33.35 −32.20 −40.85 −36.28 12.67%
1CTF 74 42 −38 −35.28 1:37:44 −45.83 −40.94 −51.5 −47.29 15.51%
3MX7 90 44 n/a n/a −44.81 −42.32 −56.32 −50.95 20.39%
3NBM 108 56 n/a n/a −52.44 −49.51 −53.66 −49.9 0.79%
3MQO 120 68 n/a n/a −64.04 −58.84 1:00:00 −62.25 −54.56 1:00:00 no RI
3MRO 142 63 n/a n/a −87.38 −82.24 −90.05 −82.32 0.10%
3PNX 160 84 n/a n/a −103.04 −96.86 −102.55 −88.06 no RI
3MSE 180 83 n/a n/a n/a n/a −92.61 −84.60 n/a
3MR7 189 88 n/a n/a n/a n/a −93.65 −83.93 n/a
3MQZ 215 115 n/a n/a n/a n/a −104.29 −95.22 2:00:00 n/a
3NO3 238 102 n/a n/a n/a n/a −122.97 −108.70 n/a
3NO6 248 112 n/a n/a n/a n/a −133.95 −117.11 n/a
3ON7 280 135 n/a n/a n/a n/a −116.88 −96.64 -n/a

n/a denotes the experimental results are not available.
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Table 5
The average energy and average RMSD values achieved from two different variants of GA. The average values are calculated over 50 different runs. The bold-faced values
indicate the winner (the lower the better).

Protein details The state-of-the-art GA (Torres et al., 2007) The MH GA

Reported values Average values

MJ model MJ model MH model Gen

Seq Size H Energy RMSD Pop Gen Energy RMSD Energy RMSD Pop (≤)

2J6A 135 71 −815.82a 16.75 50 20,000 −59.72 9.53 −61.40 9.48 50 2500
2HFQ 85 38 −543.17a 12.24 50 20,000

a The unusual values for MJ energy model.
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ig. 8. The performance hierarchy among the state-of-the-art approaches and our
H GA. Our GA outperforms the other to approaches in Ullah and Steinhöfel (2010)

nd Shatabda et al. (2013a).

operator that repeatedly applies diagonal moves towards form-
ing a hydrophobic core.

. MJ: This version of our GA uses the MJ energy model for search
and energy reporting. This version has macro-mutation operator
but not biased by hydrophobic properties of amino acids.

. HP: This version of our GA uses the HP energy model for search.
However, we report the energy values of the final conformations
returned by the GA in MJ energy model. Note that this version has
the hydrophobic core directed macro-mutation operator. This
version will show whether HP model is sufficient even when the
energy of a conformation is to be in the MJ model.

From the Column RI in Table 8, we see that MH guided GA

mproves the average interaction energy level over MJ model,
anging from 0.84% to 5.14% for all benchmark proteins. The
mprovements are not large in magnitudes but consistently better
or all the proteins.

able 6
he best RMSD values reported, are the best amongst the 50 different runs. The bold-face

Protein details Local search (Shatabda et al., 2

Seq Size H MJ guided

4RXN 54 27 5.74
1ENH 54 19 5.94
4PTI 58 32 6.02
2IGD 61 25 7.38
1YPA 64 38 6.54
1R69 69 30 6.12
1CTF 74 42 6.08

3MX7 90 44 8.17
3NBM 108 56 6.38
3MQO 120 68 6.92
3MRO 142 63 8.76
3PNX 160 84 8.78

3MSE 180 83 n/a
3MR7 189 88 n/a
3MQZ 215 115 n/a
3NO3 238 102 n/a
3NO6 248 112 n/a
3ON7 280 135 n/a
−52.13 7.48 −52.72 7.31 50 7000

5.3.2. Statistical significance
We know that the lower p-values are better. We performed the

t-test with a confidence interval of 95% (i.e., significance level is 5%)
and the results are presented in Table 8. For MJ and MH models, the
p-values of all proteins are less than the significance level. However,
for HP model, the p-value for 3MSE is below the significance level
and for other five sequences those are equal to the significance level.
Therefore, the experimental results are statistically significant.

5.3.3. Search progress
To demonstrate the search progress, we periodically find the

best energy values obtained so far in each run. For a given period, we
then calculate the average energy values obtained for that period
over 50 runs. We used a 2-min time interval. Fig. 9 presents the
average energy values obtained at each time interval for two differ-
ent proteins: 4RXN and 3PNX are the smallest and largest amongst
the 12 benchmark proteins respectively. From both of the charts,
we see that the final version of our algorithm MH performs better
than the other two versions.

6. Discussion

By encoding the conformation with angular coordinates (�
and  ), our GA might easily be applied in high-resolution PSP.
While the minimizing energy function is highly complex (such
as molecular dynamics), a simple guidance heuristic—such as

hydrophobic property or exposed surface area—could be used to
guide the macro-mutation operator. Within GA framework, the
macro-mutation operator could be applied optimizing the seg-
ments of secondary structures (˛-helix and ˇ-sheet).

d values indicate the winner (the lower the better).

013a) The MH GA

HP guided MJ guided MH guided

4.70 4.83 4.76
4.42 4.75 4.81
6.18 6.24 6.06
7.64 6.63 6.53
5.17 5.52 5.39
4.44 4.76 4.64
4.72 4.26 4.08

7.10 7.21 7.20
5.89 5.64 5.37
6.44 6.33 6.38
7.76 7.93 7.64
7.90 8.04 7.60

20.24 16.05 16.98
10.43 9.42 9.36
11.21 8.88 9.04
14.49 11.22 11.70
13.20 13.88 12.04
13.19 11.84 11.77
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Table 7
Corresponding MJ energies for global minimum RMSD and corresponding RMSDs for global minimum MJ energies over 50 runs for each proteins.

Protein details Energy corresponds to RMSD RMSD corresponds to energy

HP MJ MH HP MJ MH

Seq Size H rmsd En rmsd En rmsd En En rmsd En rmsd En rmsd

4RXN 54 27 4.70 4.24 4.83 −26.68 4.76 −26.02 −12.41 6.30 −37.06 5.91 −36.36 5.99
1ENH 54 19 4.42 −0.67 4.75 −15.21 4.81 −10.8 −10.27 7.26 −38.85 7.68 −38.39 7.14
4PTI 58 32 6.18 −0.36 6.24 −8.03 6.06 −19.16 −6.95 7.00 −32.6 8.09 −35.65 8.62
2IGD 61 25 7.64 4.00 6.63 −18.21 6.53 −19.79 −10.28 9.4 −35.57 9.86 −36.49 8.69
1YPA 64 38 5.17 5.21 5.52 −26.90 5.39 −35.01 −17.1 8.37 −38.45 7.81 −40.14 8.32
1R69 69 30 4.44 3.59 4.76 −21.70 4.64 −22.37 −11.3 5.38 −39.89 7.16 −40.85 6.40
1CTF 74 42 4.72 −3.72 4.26 −32.55 4.08 −44.44 −18.06 7.19 −50.45 5.96 −51.50 5.94

3MX7 90 44 7.10 −0.08 7.21 −42.18 7.20 −50.85 −17.97 8.73 −56.55 10.05 −56.32 9.57
3NBM 108 56 5.89 −5.07 5.64 −35.75 5.37 −36.51 −23.09 8.27 −55.38 6.75 −53.66 7.34
3MQO 120 68 6.44 5.96 6.33 −51.44 6.38 −41.69 −15.47 9.31 −62.65 7.69 −62.25 8.13
3MRO 142 63 7.76 −10.97 7.93 −50.69 7.64 −68.41 −28.63 12.96 −90.56 11.89 −90.05 9.28
3PNX 160 84 7.90 −1.16 8.04 −73.90 7.60 −69.52 −26.79 10.81 −96.98 10.11 −102.55 10.12

3MSE 180 83 20.24 −14.41 16.05 −76.99 16.98 −77.73 −30.4 22.01 −91.02 19.12 −92.61 17.88
3MR7 189 88 10.43 −12.34 9.42 −84.28 9.36 −81.9 −26.99 10.56 −94.93 11.67 −93.65 10.84
3MQZ 215 115 11.21 −5.26 8.88 −98.75 9.04 −92.85 −15.51 11.53 −108.38 10.58 −104.29 10.7
3NO3 238 102 14.49 −14.51 11.22 −112.14 11.7 −100.79 −16.41 14.89 −119.9 13.2 −122.97 13.04
3NO6 248 112 13.2 −8.67 11.88 −120.23 12.06 −116.51 −44.07 13.96 −125.68 14.26 −133.95 13.09
3ON7 280 135 13.19 28.47 11.84 −105.63 11.77 −98.31 −8.59 13.95 −120.16 13.01 −116.88 16.58

Table 8
The effect of using HP energy model within a macro-mutation operator. The bold-faced values indicate the winners. The lower the energy value, the better the performance.
The t-test was performed with a confidence interval of 95%.

Protein details Best of 50 runs Average [p-value] of 50 runs RI

Seq Size H HP MJ MH HP MJ (r) MH (t) on MJ

4RXN 54 27 −12.41 −37.71 −36.36 −3.54 [2.4E−16] −33.32 [5.9E−56] −33.60 [1.7E−75] 0.84%
1ENH 54 19 −10.27 −37.37 −38.39 −7.29 [3.8E−32] −34.86 [1.1E−66] −35.67 [1.2E−70] 2.32%
4PTI 58 32 −6.95 −35.31 −35.65 −2.81 [1.5E−14] −30.93 [3.6E−55] −31.01 [4.8E−67] 0.26%
2IGD 61 25 −10.28 −36.97 −36.49 −6.75 [2.7E−31] −33.65 [3.5E−66] −33.75 [4.0E−70] 0.30%
1YPA 64 38 −17.1 −39.13 −40.14 −9.90 [2.3E−33] −35.20 [6.4E−65] −36.33 [2.8E−73] 3.21%
1R69 69 30 −11.3 −39.77 −40.85 −4.31 [5.6E−19] −35.43 [4.9E−65] −36.28 [2.5E−68] 2.40%
1CTF 74 42 −18.06 −50.09 −51.5 −10.97 [1.1E−32] −44.98 [1.4E−61] −47.29 [6.8E−70] 5.14%

3MX7 90 44 −17.97 −55.57 −56.32 −11.16 [1.9E−31] −48.46 [5.5E−62] −50.95 [2.6E−70] 5.14%
3NBM 108 56 −23.09 −57.17 −53.66 −15.29 [9.8E−36] −48.47 [9.5E−60] −49.90 [2.6E−70] 2.95%
3MQO 120 68 −15.47 −60.22 −62.25 −6.75 [1.7E−18] −53.00 [4.8E−61] −54.56 [2.4E−66] 2.94%
3MRO 142 63 −28.63 −93.77 −90.05 −18.65 [7.2E−31] −79.32 [2.1E−62] −82.32 [1.6E−67] 3.78%
3PNX 160 84 −26.79 −99.87 −102.55 −18.55 [1.2E−34] −85.64 [6.0E−60] −88.06 [1.3E−60] 2.83%

3MSE 180 83 −30.4 −91.02 −92.61 −13.17 [5.0E−21] −84.47 [3.2E−70] −84.60 [3.6E−69 0.20%
3MR7 189 88 −26.99 −94.93 −93.65 −5.54 [1.4E−06] −85.70 [4.1E−69] −83.93 [1.9E−36] non
3MQZ 215 115 −15.51 −108.38 −104.29 6.86 [8.7E−08] −96.58 [1.5E−68] −95.22 [6.7E−64] non
3NO3 238 102 −16.41 −119.9 −122.97 −2.41 [5.1E−02] −108.68 [1.1E−68] −108.70 [3.3E−65] 0.12%
3NO6 248 112 −44.07 −125.68 −133.95 −12.65 [2.0E−11] −116.31 [1.8E−71] −117.11 [7.0E−67] 0.70%
3ON7 280 135 −8.59 −120.16 −116.88 9.38 [7.0E−10] −104.57 [1.1E−56] −96.64 [2.4E−45] non

Fig. 9. The search progress over a time-span of 60 min for proteins 4RXN and 3PNX of sequence length 54 and 160 amino acids respectively.
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Our approach can easily divide the whole optimization process
nto two stages guided by two energy models with different com-
lexities. The macro-mutation operator can be guided by simpler
nergy models such as distance from hydrophobic core, exposed
urface area, hydrophobicity of amino acids, hydropathy index of
he amino acids, and so on. Conversely, the main objective func-
ion can be more realistic such as molecular dynamics based energy

odels. This two-stage optimization will reduce the overall compu-
ational complexities. As a result, our framework has a good chance
o succeed in more realistic models even for large sized proteins.

. Conclusion

Our guided macro-mutation in a graded energy based genetic
lgorithm, ‘MH GeneticAlgorithm’, is found to be an effective
ampling algorithm for the convoluted protein structure space.
he strategical switching in between the Miyazawa–Jernigan (MJ)
nergy and the hydrophobic-polar (HP) energy made the proposed
lgorithm perform better compared to the other state-of-the-art
pproaches. This is because, while the fine graded MJ energy inter-
ction computation become computationally prohibit, the low
esolution HP energy model can effectively sample the search-
pace towards certain promising directions. In addition, the GA
ramework was enhanced and made powerful, since it uses not only
rossover but also three effective move operators. Further to diver-
ify the population to keep sampling or, exploring the search space
ffectively, a hydrophobic core-directed macro-mutation operator,
win removal as well as a random-walk algorithm to recover from
he stagnation has been applied. To compare the performance of
ur GA, we have extensively compared with the existing state-
f-the-approaches using the available benchmark problems and
ound our approach to be consistently better as well as often found
ignificantly better – t-test result in terms of p-values have been
rovided to support the claims. For the lattice configuration to
e followed, we used 3D face-centered-cube (FCC) lattice model,
ecause prediction in the FCC lattice model can yield the densest
rotein core and the FCC lattice model can provide the maximum
egree of freedom as well as the closest resemblance to the real or,
igh resolution folding within the lattice constraint. This enables
he predicted structure to be aligned and hence, migrated to a real
rotein (prediction) model efficiently for future extensions.
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