Journal of Theoretical Biology 398 (2016) 112-121

Contents lists available at ScienceDirect - Journal of
Theoi'etical
. . ‘Biology
Journal of Theoretical Biology o
journal homepage: www.elsevier.com/locate/yjtbi

Discriminate protein decoys from native by using a scoring function

—_—

@ CrossMark

based on ubiquitous Phi and Psi angles computed for all atom

Avdesh Mishra, Sumaiya Igbal, Md Tamjidul Hoque *

Computer Science, University of New Orleans New Orleans, LA 70148, USA

HIGHLIGHTS

GRAPHICAL ABSTRACT

e Ubiquitous dihedral angles (uD) are

s | ot | (o

mined to generate energy compo-
nents.

e Regularized exact regression based
predicted ASA is modeled into
energy score.

o Weight-optimized linear sum of core,

ASA and uD energies formed o

3DIGARS3.0.

o The new Energy function 3DIGARS3.0,
outperforms state-of-the-art methods.

ARTICLE INFO ABSTRACT

Article history:

Received 26 September 2015
Received in revised form

26 February 2016

Accepted 17 March 2016
Available online 28 March 2016

Keywords:

Protein structure prediction
Decoy structure

Native structure

Genetic Algorithm
Optimization

The success of solving the protein folding and structure prediction problems in molecular and structural
biology relies on an accurate energy function. With the rapid advancement in the computational biology
and bioinformatics fields, there is a growing need of solving unknown fold and structure faster and thus
an accurate energy function is indispensable. To address this need, we develop a new potential function,
namely 3DIGARS3.0, which is a linearly weighted combination of 3DIGARS, mined accessible surface area
(ASA) and ubiquitously computed Phi (uPhi) and Psi (uPsi) energies — optimized by a Genetic Algorithm
(GA). We use a dataset of 4332 protein-structures to generate uPhi and uPsi based score libraries to be
used within the core 3DIGARS method. The optimized weight of each component is obtained by applying
Genetic Algorithm based optimization on three challenging decoy sets. The improved 3DIGARS3.0 out-
performed state-of-the-art methods significantly based on a set of independent test datasets.

Published by Elsevier Ltd.

1. Introduction

Energy function is one of the most important component of
protein folding and structure prediction problem. We need an
accurate energy function that can assign the lowest global or, local
energy to the native protein. Although, there exist fields of quan-
tum mechanics (Cornell et al., 1995; Brooks et al., 1983), that can
solve the existing problem, the equations are tedious to work with
as the scope of the space or domain is fairly complex. Thus,
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statistical-based, empirical or knowledge-based energy functions
have been developed (Samudrala and Moult, 1997; Zhou and Zhou,
2002; Tanaka and Scheraga, 1976; Jernigan and Bahar, 1996; Kor-
etke et al., 1996; Tobi and Elber, 2000) and found to be more
successful than potentials based on quantum mechanics. One of
the major reason for the success of knowledge-based potential is
the growing number of experimental protein structures.

The knowledge of 3D (three-dimensional) structures of the
target proteins and their binding sites with ligands is important
for rational drug design. Although, X-ray crystallography is a
powerful tool in this regard, it is time-consuming and expensive,
and not all proteins can be successfully crystallized. Membrane
proteins are difficult to crystallize and most of them will not
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dissolve in normal solvents. Thus, so far, very few membrane
protein structures have been determined. Further, although recent
breakthrough in high resolution NMR has indicated that it is
indeed very powerful tool in determining the 3D structures of
membrane proteins and their complexes (Briischweiler et al.,
2015; Berardi et al., 2011; OuYang et al., 2013), it is also time-
consuming and costly. To acquire the structural information in a
timely manner, a series of 3D protein structures and their binding
sites with ligands are usually derived using various structural
bioinformatics tools (Chou and Wei, Zhong; Carter and Chou, 1998;
Wang et al., 2009; Chou, 2004).

Various automated method are also developed to rapidly and
effectively identify these binding sites (Jia et al., 2015a; 2015b).
Additionally, the progress of knowledge-based statistical energy
function and their applicability in the field of protein-ligand,
protein—protein and protein-DNA binding affinity prediction are
found to be widely accepted and useful in drug design (Zhang et
al.,, 2005; Muegge and Martin, 1999; Gohlke et al., 2000; Mitchell
et al,, 1999; Mitchell et al., 1999). For example, Zhang et al. showed
that the protein-ligand binding affinities predicted by the DFIRE
energy function has correlation coefficient of 0.63 with the
experimentally measured protein-ligand binding affinities (Zhang
et al., 2005; Gohlke et al., 2000). Thus, intra-disciplinary applica-
tion of statistical potential and their performance have drawn the
attention of numerous researchers and drug industries.

It has been demonstrated that all-atom based potentials out-
perform the residue-based potentials (Samudrala and Moult, 1997;
Yang and Zhou, 2008; Zhou and Skolnick, 2011). All-atom based
potentials incorporate both the backbone information as well as
the side chain information. In the recent past, we have seen
numerous efforts to enhance the accuracy of the all-atom based
energy function. Several of these energy functions take advantage
of inherent properties of atoms or residues such as generalized
orientation angles (Zhou and Skolnick, 2011), orientation depen-
dent interactions by considering each polar atom as a dipole with a
direction (Yang and Zhou, 2008), error modeling between real and
predicted torsion angles (Hoque et al., 2016) and hydrophobic and
hydrophilic (HP) properties (Mishra, 2015). Moreover, some energy
functions use accurately predicted structural properties with some
restraints to improve the performance of protein structure pre-
diction. As an example, the predicted secondary structure is fre-
quently utilized to limit the conformational space which results in
increased protein structure prediction accuracy (Chou et al., 1985;
Chou and Scheraga, 1982; Chou et al., 1992; Chou and Carlacci,
1991; Carlacci et al, 1991; Chou et al., 1992). Likewise, the gen-
eralized orientation-dependent all-atom potential (GOAP) (Zhou
and Skolnick, 2011), computes the relative orientation of the
planes associated with each heavy atom in interacting pairs. In
addition, the dDFIRE (Yang and Zhou, 2008; Zhou and Skolnick,
2011; Hoque et al., 2016) potential augments orientation depen-
dence of polar-polar and polar-nonpolar atom interactions
(dipoles) with the distance-dependent knowledge-based, finite
ideal-gas reference state potential (DFIRE) (Zhou and Zhou, 2002).
The orientation vector of a given polar atom is described by the
sum of the bond vectors that covalently bond the polar atom with
other heavy atoms. The dDFIRE potential computes three angles
(namely, 8,, 8, and 0,,, in Fig. 1) in dipole-dipole interactions
made by the two polar atoms (p and q in Fig. 1). Adding the
orientation dependency of the polar atoms to the distance
dependent DFIRE potential, has improved the performance over
DFIRE in refolding the protein, especially at the terminal regions.
The improvement could be because the orientation angles can
capture three dimensional (3D) features, while the distance-
dependent core potential is computed purely from the pair-wise
distance between two atoms which may not contain enough ter-
tiary information.
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Fig. 1. Definition of the orientation angles 6,, 6; and 6,,. The vectors r;e and r:;

are the reference directions for polar atoms p and g, respectively (Hoque et al.,
2016).
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Fig. 2. Definition of the angle ¢ formed by four atoms (At;, At,, At3 and At,). Planes
1 and 2 are two planes passing through At;, At,, At3 and At,, Ats, At, respectively. ny
and n, are the normal vectors on the respective planes. uPhi is computed using At;
belonging to one residue and a set of atoms, At,, Ats, Ats belonging to some other
residues. Similarly, uPsi is computed using a set of atoms, At;, At,, At; belonging to
one residue and an atom At, belonging to some other residue.

Furthermore, dihedral or torsion angles contain important local
structural information that help manifest the folding (Borguesana
et al, 2015). A dihedral angle is the angle between two inter-
secting planes (see Fig. 2). These angles indicate the rotational
displacement required for the backbone of the amino acid
sequence to sample a certain structure or folds. The well-known
Ramachandran plots (Ramachandran et al., 1963), which are the
sampling distribution of the two dihedral angles, namely Phi and
Psi is reliably used in computing and predicting possible folds
(Hooft et al,, 1997; Yang and Zhang, 2015). The third dihedral
angle, omega essentially only varies in between two values, 0° or
180°. Dihedral angles are defined by four points in the space and
provide orientation information of the secondary structure, such
as helix, sheet or coil, of a protein.

In their regular usage, the aforementioned dihedral angles
convey only the local structural information pertaining to the
backbone conformation of the protein. Mining dihedral angles
ubiquitously over all-atom orientations, could improve the struc-
ture prediction and the energy function. This idea motivated us to
integrate all-atom dihedral angle based potential that can map one
dimensional linear information of interacting atoms to three
dimensional features which can be incorporated into our existing
core 3DIGARS2.0 energy function.

With a goal to develop a more accurate all-atom distance-
dependent knowledge-based potential to discriminate native
structures from decoys, we propose a potential in this article
which is a linearly weighted combination of 3DIGARS, sequence-
specific solvent-accessibility, mined ubiquitous Phi (uPhi) and Psi
(uPsi) based energies — optimized by genetic algorithm (GA). In our
prior work, to build 3DIGARS2.0, we combined the 3DIGARS and
sequence-specific solvent-accessibility energies to improve
3DIGARS. In this work, we combine 3D structural features, uPhi
and uPsi, in the form of energy component to improve the accu-
racy further. The uPhi angle is computed in similar way as the
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dihedral angle, Phi, using the coordinates of four atoms. Likewise,
the uPsi is an angle computed in the same way as dihedral angle,
Psi, using the coordinates of four atoms. We name the angle as
uPhi or uPsi because, we compute these angles ubiquitously for all
the atoms in a given structure. Training using Protein Data Bank
(PDB) dataset, linearly optimizing using most challenging decoy
datasets and testing using several independent decoy datasets, we
ensured the superior performance of the proposed energy func-
tion, which significantly outperformed the state-of-the-art
methods.

To establish an uPhi and uPsi based energy function for a bio-
logical system, we aligned the outline of our paper following
Chou's 5-step rule (Chou, 2011) as: (a) details of the underpin
theoretical aspect and the formulation of our proposed approach,
described in Section 2, (b) construction or selection of a valid
benchmark dataset to train, optimize and test the method,
described in Section 3, (c) brief discussion of the evolution of the
relevant theories based on which the proposed method is evolved,
described in Section 4, (d) conclude the proposed method, in
Section 5, (e) establish a user-friendly web-server for the predictor
that is accessible to the public, if not available immediately, then at
least the stand alone code is provided.! A series of recent pub-
lications following such steps can be found here (Jia et al., 2015a,
2015b; Chen et al., 2013; Lin et al., 2014; Ding et al., 2014; Xu et al.,
2014; Zi Liu et al., 2015).

2. Material and methods

This section discusses the proposed energy function to provide
a clear picture of the proposed advancements.

2.1. uPhi, uPsi based energy (E“™ EUPsi)

Protein macromolecule is a linear chain of amino acid residues,
where the residues are linked together by peptide bond. The local
conformation of the amino acid residues along the backbone is
regarded as the secondary structure of a protein (Lehninger et al.,
2005). The next level of complexity is regarded as tertiary or 3D
structure of a protein, which essentially provides the functional
proteins (Borguesana et al., 2015; Lesk, 2004). Torsion angles are
one of the ways to represent a protein structure. The conformation
of a peptide backbone is mainly described by two torsion angles,
Phi and Psi. Furthermore, the torsion angle omega is not involved
in the molecular rotation, because it is restricted by the strong
double bond (Lehninger et al., 2005). Phi involves the backbone
atoms C(0),_1-N,—C(a),-C(0), and Psi involves the backbone
atoms N,-C(a),-C(0),-N;, 1. Thus, Phi controls the C(O),_ ver-
sus C(0), distance and Psi controls the N, versus N, 1 distance
and orientation, where n is the current atom for which the dihe-
dral angles are calculated (Lodish et al., 1990).

In our implementation, we capture 3D structural information
described by the torsion angles Phi and Psi computed for all atoms,
named as uPhi and uPsi respectively, in the form of energy com-
ponents. To compute the uPhi, a set of four atoms say, “{At;, Atp,
At,, Atp}” and their corresponding residue index say, “{Rlm, Rl Rl,,
RI,}" are considered as follows:

(i) Ry, Rl,, and RI, can either be of same or different residues,
(ii) Rl # (RI, or RI, or RIp), i.e., Rl,, must be of the different residue
w.r.t to the other 3 atoms,
(iii) m<n<o<p, and
(iv) {n, o, p are consecutive} or, {o-n=1 and p-o=1}.

1 http://cs.uno.edu/ ~ tamjid/Software/3DIGARS/3DIGARS3.0.zip.
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Fig. 3. (a) Atoms arrangement as well as vectors created using the Cartesian
coordinates of the atoms. (b) The dihedral angle 6 involving the four atoms.

Similarly, to compute the uPsi, a set of four atoms and their
corresponding residue indexes are used which satisfies the fol-
lowing conditions:

(i) Rl RI,, and RI, can either be of same or different residue,
(ii) RI, # (Rl or RI, or RI,), i.e., RI, must be of the different residue
w.r.t to the other 3 atoms,
(ili) m<n<o<p, and
(iv) {m, n and o are consecutive} or, {n-m=1 and o-n=1}.

We compute the uPhi and uPsi using the (x, y, z) or, the Carte-
sian coordinates of the four atoms. Two planes are defined using
four atoms. Plane 1 is formed by the atoms At,,, At, and At, and
plane 2 is formed by the atoms At,, At, and At, (see Fig. 2). The
angle between these two planes is define as the dihedral angle, 6.
To compute the dihedral angle, we first calculate three vectors vy,
v, and v3 as shown in Fig. 3. Next, we calculate the normal vectors
to both of the planes. The first normal vector is calculated by cross
product of v, and v, (i.e., 1 x V) and named as v,4. In the same
way, second normal vector is calculated by cross product of vector
v, and vs (i.e., V3 x v3) and named as vs. The angle between these
two normal vectors (i.e., v4 and vs) is then calculated via their dot
product which provides the dihedral angle, 6. For mining the uPhi
and uPsi information into energy score libraries, we use the
training dataset of 4332 proteins as it was in (Mishra, 2015).

To compute the uPhi and uPsi energies, first, we obtain two
different frequency distribution (FD) tables, namely FD,p,; and
FD,ps;i. Second, the range of uPhi and uPsi values, computed as the
cosine value of the angle are mapped from —1 to 1, this range is
divided into 20 bins, each with an equal width of 0.1. We con-
sidered 14,028 possible atom pairs that can be obtained from 167
different heavy atom types to represent the rows. Thus, both the
FD,pr; and FD,ps; consist of 14,028 rows and 20 bins of equal width.
The FD,pp; for uPhi is updated using (1)

FDyphi(Atm, Atn, Blyppi) = FDyppi(Atm, Atn, Bl,pni) +1.0 (1
where, At,, and At,, are the two atoms from different residues in a
protein structure and the BI,py; is the bin index computed from
uPhi. While updating the FD,py;, we do not take the atom-pairs
into consideration whose distance (At At,) > 15 A. The bin index
in (1) is expressed as in (2)

Bl psi = uPsi/Bin_Width )
where Bin_Width = 0.1. In the same way, the FD,p; for uPsi is
updated using (3)

FDuPsi(Ato,Atp, BIuPsi) = FDuPsi(Ato,Atp, BIuPsi)"‘ 1.0 (3)
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where, At, and At, are the two atoms from different residues in a
given protein and the Bl,pg; is the bin index computed from uPsi.
While updating the FD,ps; we do not take into consideration atom-
pairs whose distance (At,, At,)>15A. The bin index in (3) is
expressed as in (4)

Bl,ps; = uPsi/Bin_Width 4)

where, Bin_Width=0.1. After the corresponding FD is updated for
all the 4332 protein structures from the dataset, we replaced the
zero entries with a small value, 10~ 6. The FD,py and FDyps; are
further utilized to compute the energy score e and e“™
respectively for each cell given by (5) and (6) respectively.

P (Aty, Atn, Blypni)

{FDupni(Atm, Atu, Blupni) /S g1, FDupni(Atm, Atu, Blupni) }

{ZAtm,Atn FDyphi(Atm, Atn, Blupni) /3 gy, 2 Aty At, FDuphi(Atm, Atn, BIuPhi)}
)
EUPSi(Ato,Atp, Bl psi)
{FDuPsi(AthAtps BIUPSi)/EB’upS;FDUPS[(AtO’Atp’ BIuPsi)}

{meﬁtn FDuPsi(AtoaAtpa BIuPsi)/EBluPS; EAtht,, FDuPsi(Ato’ Atp: BIuPsi)}
(6)

where, 37, - indicates the summation over 20 bins, and 3,
indicates the summation over 14,028 atom pairs and > Bl
> at,. Ar, indicates total of all the atom pairs summed over all the
bins. Eqs. (5) and (6) are similar, except the computations are done
using FD,p; and FD,ps; respectively. Finally, the uPhi and uPsi based
energies E*™ and E*™ for a given protein structure are computed

using (7) and (8) respectively

BN =N B Al Atn, Blypy) @

B =3 B (Ato, Aty Blups) ®)

where, >, ppi and Y ,p,; represents the summation over all possible
uPhi and uPsi values respectively. Fig. 4 illustrates an overview of
the computation of uPhi and uPsi based energies and then opti-
mized incorporation to form 3DIGARS3.0.

| 3DIGARS Energy H ASA Energy | ( Dataset of 4332 Protein Structures )
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| Compute uPhi, uPsi |
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Fig. 4. Process flow of the design and development of 3DIGARS3.0 energy function.

2.2. The 3DIGARS3.0 energy function

3DIGARS3.0 is a linearly weighted combination of 3DIGARS,
sequence-specific solvent-accessibility, uPhi and uPsi based ener-
gies which is expressed as in (9)

E3DIGARS3.O :E3DIGARS+(W1 x EASA)—I—(WZ x EuPhi)+(W3 x EuPsi) (9)

where, the optimized values of the weights w,, w, and ws are
obtained by applying GA (Hoque et al., 2010; Bhandari et al., 1996;
Hoque et al., 2009) over optimization dataset (see Section 3.1.2).

3. Datasets and results

This section first discusses the training, optimization and
independent test datasets, then presents the results obtained by
the proposed method including the analysis.

3.1. Datasets

The training datasets for 3DIGARS, sequence-specific solvent-
accessibility, uPhi and uPsi energies were obtained from the PDB
(Berman et al., 2000). We optimized the advanced energy function
with three decoy datasets (Moulder, Rosetta and I-Tasser). Then we
rigorously test our method on the independent test datasets (4sta-
te_reduced, fisa_casp3, hg_structal, ig_structal, ig_structal_hires).

3.1.1. Training datasets

The following datasets were used to compute the energy score
libraries for 3DIGARS, sequence-specific solvent-accessibility, uPhi
and uPsi based energies.

3.1.1.1. Training dataset for 3DIGARS (E3P!ARS). 3DIGARS energy
score libraries were created using the dataset obtained from the
PDB (PDB, 2014) server. Multiple datasets, which differ based on
the dataset collection parameters such as maximum resolution
and sequence identity cutoff, were initially generated. Further-
more, proteins with unknown residue as well as with missing
residues anywhere except for five terminal residues on either side
were removed to avoid unstable statistics. Two different energy
functions, RAPDF and DFIRE, were trained on these multiple
datasets with varying configurations and tested using the three
most challenging decoy sets. Then the dataset with the best per-
formance was selected as the training dataset for the 3DIGARS
energy function. In our implementation, we found that the dataset
of 4332 proteins with resolution < 2.5, single chain and sequence
identity cutoff of 100% provided the best results. We believe that
selecting proteins with 100% identity cutoff (which means we are
not ignoring proteins even if they are structurally similar) pro-
vided better results because they provide us the true representa-
tion of the natural frequency-distributions.

3.1.1.2. Training dataset for sequence-specific solvent-accessibility
energy (E**). We prepared a new dataset from PDB (Berman et al.,
2000) which is referred to as the Secondary Structure Dataset
(SSD1299), consisting of 1299 protein sequences. Initially, we
collected 2793 protein chains (both single and multiple chains)
from PDB with the following specification: (a) solved by X-ray
crystallography; (b) resolution <15A; (c) chain length >40
residues and (d) 30% sequence identity cut-off. We further carried
out the following three step refinement of this dataset: (i) we
filtered the dataset so that the pair wise sequence similarity is no
more than 25% using BLASTCLUST; (ii) we discarded the protein
sequences that contain unknown amino acids labeled ‘X’ as the
physical properties of this amino acid is unknown and (iii) we
removed the sequences containing amino acids of unknown
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coordinates. This resulted in a dataset of 1299 sequences
(SSD1299) and 272,800 residues. We determined the actual value
of the surface area by the DSSP program (Kabsch and Sander, 1983)
and the predicted value of surface area by REGAd>p.

3.1.1.3. Training dataset for uPhi and uPsi energies (E“P", E“Pi). To
generate uPhi and uPsi based score libraries we use the same
dataset of 4332 known protein structures used by 3DIGARS
method.

3.1.2. Optimization datasets
Following datasets were used to optimize the proposed energy
function, 3DIGARS2.0.

3.1.2.1. Moulder decoy dataset. The Moulder (Sali, 2014) decoy set
consists of 20 proteins for which 300 comparative models were
built using a homologous template. The program, called MOD-
ELLER-6, was used to build the decoys. MODELLER-6 uses a default
model building routine with fast refinement. Fast refinement
keeps most of the template structure unchanged and is different
from decoys generated by ab initio folding that have all structure
regions reassembled from scratch.

3.1.2.2. Rosetta decoy dataset. The Rosetta datasets consists of 58
protein sets generated by the Baker Lab. Each set contains a native
structure, 20 random models and the 100 lowest scoring models
obtained from 10,000 decoys using ROSETTA de novo structure
prediction followed by all-atom refinement (Zhang and Zhang,
2010; Tsai et al., 2003).

3.1.2.3. I-Tasser decoy dataset. The I-Tasser datasets consist of 56
protein sets. Each contains a native structure and around 300-500
decoys generated by both template-based modeling and atomic-
level structural refinement. The I-Tasser (Lab, 2014) decoy set-II
was generated by first using Monte Carlo Simulations and then
refined by GROMACS4.0 MD simulation in order to remove steric
clashes and improve hydrogen-bonding networks (Lab, 2014).

3.1.3. Independent test datasets

Five independent test decoy sets were used to evaluate the
performance of the proposed energy function, 3DIGARS3.0 which
are described below.

3.1.3.1. 4state_reduced decoy dataset. The 4state_reduced (Park and
Levitt, 1996) decoy set consist of 7 proteins. The alpha-carbon
positions for these decoys were generated by selecting ten resi-
dues in each protein using a 4-state off-lattice model. The all atom
models were then built from the alpha-carbon atoms with the
segmod package (Levitt, 2014).

3.1.3.2. fisa_casp3 decoy dataset. The fisa_casp3 (Simons et al.,
1997) decoy set consist of 5 proteins. These decoys are the struc-
tures predicted by the Baker group for CASP3. The main chain for
these decoys was generated using a fragment insertion simulated
annealing procedure whereas, the side chains were modeled with
the SCWRL package (Krivov et al., 2009).

3.1.3.3. hg_structal decoy dataset. The hg_structal (Levitt, 2014) set
contains decoys for 29 globins (hg). Each globin is built through
comparative modeling by using 29 other globins as template
(Fogolari et al., 2007) applying segmod program (Levitt, 2014).

3.1.34. ig_structual decoy dataset. The ig_structal (Levitt, 2014)
decoy set contains 61 immunoglobulins (ig). Each decoys in this
set is built by comparative modeling or homology modeling using

all the other immunoglobulins as templates. Most of the models
have very low RMSD from the native (Fogolari et al., 2007).

3.1.3.5. ig_structual_hires decoy dataset. This set contains 20
immunoglobulins which are a high resolution subset of the
ig_structal decoy set. The resolution range for this set is 1.7-2.2 A
compared to full set of 61 which has a resolution range from 1.7-
3.1 A. Also, the decoys in this set are built by comparative mod-
eling or homology modeling using all the other immunoglobulins
as templates and by applying program segmod (Levitt, 2014). Most
of the models in this set also have very low RMSD from the native
(Fogolari et al., 2007).

3.2. Results

The performance of 3DIGARS3.0 potential is evaluated based on
the five independent test datasets (see Section 3.1.3). None of the
proteins from the independent test dataset were either used in
training or in optimization. Each of the decoy sets consists a of
protein structure very close to the native one and the native one is
also included within the set. Our objective here is to correctly
identify the native structure out of the decoy structures present
within each set. All the decoys, including the native structure, are
first scored using the energy function. Next, the one with the
minimum negative score is picked. If the structure picked is the
native, we conclude the energy function is able to correctly iden-
tify the native protein out of its decoys.

To examine the effectiveness of a statistical prediction, the
following three cross-validation methods are often used in prac-
tical application: independent dataset test, subsampling or k-fold
cross validation test, and jackknife test. However, among these test
methods, the jackknife test is deemed the least arbitrary and can
always yield a unique result for a given benchmark dataset as
elaborated in (Chou and Zhang, 1995). Though, the jackknife test
has been widely recognized and increasingly used by researchers
to examine the quality of various predictors (Cai, 2003; Dehzangi
et al., 2015; Shen and Chou, 2007; Khan et al., 2015; Chou and Cai,
2005; Kumar et al., 2015; Mandal et al., 2015), however, it could be
computationally very expensive. To reduce the computational
time, we adopted the independent dataset test in this study.

We primarily validated the usefulness of the proposed energy
components (uPhi and uPsi) used in formulating our energy function
3DIGARS3.0, by separate tests, shown in Table 2. There, to compare
the combined effect, we tested the effects of the three orientation
dependent energy components (6, 8, 6,4) proposed in dDFIRE with
the 3DIGARS2.0. First, the orientation dependent energy compo-
nents were added to all the decoy sets. Next, optimization was
performed using optimization datasets and testing was done over
independent test datasets. In Table 1, we show that the performance
of 3DIGARS3.0 is —3.94% —0.81% and -1.61% less than
(3DIGARS2.0+dDFIRE), (3DIGARS2.0+ uPhi) and (3DIGARS2.0+ uPsi)
respectively based on the optimization dataset. However, in Table 2,
we show that the 3DIGARS3.0 outperforms (3DIGARS2.0+ dDFIRE),
(3DIGARS2.0+uPhi) and (3DIGARS2.0+uPsi) methods by 495%,
29.348% and 440.91% respectively based on the independent test
dataset. The percentage of weighted average improvements are
calculated using (10).

WA = 10— X0 100 10
21X
where, y; represents new value and x; represents old value that are
to be compared. Additionally, from Tables 1 to 4, the values outside
of the parenthesis are the number of correct counts and the values
within the parenthesis are the average z-score of the native struc-
tures. Correct counts are generated based on the assignment of the
lowest energy scores to the number of native protein structures. For
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Table 1

Performance comparison of several combined methods on optimization datasets based on correct native count.

Decoy Sets (no. of targets) Methods
3DIGARS2.0+ dDFIRE 3DIGARS2.0+ uPhi 3DIGARS2.0+ uPsi 3DIGARS2.0+ uPhi + uPsi(3DIGARS3.0)
Moulder (20) 19 (-2.625) 19 (-3.239) 19 (-2.672) 20 (—3.851)
Rosetta (58) 52 (—3.080) 48 (—2.870) 49 (—2.987) 46 (—2.683)
[-Tasser (56) 56 (—3.992) 56 (—4.972) 56 (—4.295) 56 (—5.573)
Weighted average in % —-3.94 -0.81 —1.61

Legend: entry format is native-count (z-score). Bold indicates best scores. Underscore indicates close to best scores.

Table 2

Performance comparison of several combined methods on independent test datasets based on correct-native count.

Decoy sets (no. of targets) Methods
3DIGARS2.0 + dDFIRE 3DIGARS2.0 + uPhi 3DIGARS2.0 + uPsi 3DIGARS2.0 + uPhi + uPsi(3DIGARS3.0)
4state_reduced (7) 4 (—2421) 6 (—3.063) 4(-2.641) 7 (—3.456)
fisa_casp3 (5) 5 (—4.553) 5 (—4.543) 5 (—-4.681) 4 (-4.076)
hg_structal (29) 11 (- 1.576) 25 (—2.674) 12 (—1.583) 28 (—3.678)
ig_structal (61) 0(0.412) 40 (—-1.120) 0 (0.267) 60 (—2.526)
ig_structal_hires (20) 0(0.219) 16 (—1.162) 1 (0.030) 20 (—2.378)
Weighted average in % 495 29.348 44091

Legend: entry format is native-count (z-score). Bold indicates best scores. Underscore indicates close to best scores.

example, for the fisa_caps3 decoy set of five proteins sets, native
structures of four protein-sets were assigned the lowest energy
score among their respective decoy structures. Whereas for one of
the protein sets, the lowest energy score was assigned to a decoy
structure rather than a native structure. So, the correct count for
fisa_caps3 decoy set is 4 out of 5. The rest of the decoys were
similarly scored and their correct counts were obtained. The results
of the addition of orientation dependent components (i.e., the
dDFIRE) to 3DIGARS2.0 based on the optimization datasets and
independent test datasets are shown in Tables 1 and 2 respectively
(see second column). We can see that the addition of orientation
dependent energy resulted in impressive results for optimization.
But, it performed poorly for the independent test dataset. Following
similar procedures, we tested the addition of uPhi and uPsi based
energies to the 3DIGARS2.0 energy. It is clear that addition of uPsi
performed slightly better than uPhi during optimization (see the
results shown in Table 1, third column versus fourth column).
However, the performance of uPhi on the independent test dataset
was very impressive and outperformed uPsi with larger differences
(see the results shown in Table 2, third column versus fourth col-
umn). Also, the performance of uPhi and uPsi during optimization
are slightly less than dDFIRE (see the results shown in Table 1 to
compare second, third and fourth columns). On the other hand,
while testing the addition of uPhi and uPsi, we found that the per-
formance of uPhi is significantly better than both uPsi and dDFIRE
(see the results shown in Table 2 to compare second, third and
fourth columns). Whereas, the performance of uPsi is slightly better
than dDFIRE (see the results shown in Table 2, second column versus
fourth column). Next, we combined uPhi and uPsi based energies
components with 3DIGARS2.0 and we optimized and tested. The
optimization resulted in slight decrement of correct count for
Rosetta. Nevertheless, the correct count for Moulder increased and
resulted in 20 out of 20 (see the results shown in fifth column of
Table 1). Additionally, the test of this combination which we finally
named 3DIGARS3.0, outperforms all the other methods significantly
(see the results shown in fifth column of Table 2).

In addition, we compare the performance of 3DIGARS3.0 to its
prior versions (3DIGARS and 3DIGARS2.0) as well as various state-
of-the-arts approaches such as DFIRE, RWplus, dDFIRE and GOAP.
We first optimize our method by GA using the optimization

datasets and then perform the independent dataset test. However,
overfitting was not a concern because our objective was to opti-
mize the linear combinations of the energy components. Irre-
spectively, independent test were used and the outcome confirms
the robustness of our method. Table 3 shows the performance
comparison based on the optimization datasets. 3DIGARS3.0 out-
performs DFIRE, RWplus, dDFIRE, GOAP and 3DIGARS by 38.64%,
28.42%, 56.41%, 11.93% and 18.45% respectively. Whereas, it was
seen that the performance of 3DIGARS3.0 decreased by —1.61%
while comparing with 3DIGARS2.0 which is a minor decrement
compared to the improvement made with respect to other
methods. In addition, these results are from the GA optimization
and so, to have a more reliable evaluation, we compare the per-
formance of 3DIGARS3.0 with respect to the same methods based
on the independent test datasets, as shown in Table 4. Based on
the independent test datasets, 3DIGARS3.0 outperforms DFIRE,
RWhplus, dDFIRE, GOAP, 3DIGARS as well as 3DIGARS2.0 by
440.91%, 440.91%, 72.46%, 20.20%, 417.49% and 440.91% respec-
tively. Note that the percentage of weighted average improvement
while comparing 3DIGARS3.0 with 3DIGARS2.0 for optimization
dataset is —1.61% whereas, in case of independent test dataset
comparison is 440.91%.

Note that 3DIGARS is a pair wise distance based energy func-
tion and 3DIGARS2.0 is a linear combination of 3DIGARS with the
sequence-specific solvent-accessibility based energy component
included. Thus, only DFIRE and RWplus (Zhang and Zhang, 2010)
may be directly comparable with 3DIGARS and 3DIGARS2.0. Fur-
thermore, the dDFIRE combines DFIRE with the orientation
dependent polar atom interactions. Also, the GOAP combines
DFIRE with the relative orientation of the planes associated with
each heavy atom in the interacting pairs. Thus, these energy
functions may not be directly compared with 3DIGARS and
3DIGARS2.0 but with 3DIGARS3.0. Since, 3DIGARS3.0 uses the uPhi
and uPsi which are similar 3D features as used by dDFIRE and
GOAP. Results for DFIRE, RWplus, dDFIRE and GOAP are obtained
from Zhou and Skolnick (2011). Likewise, the results for optimi-
zation dataset for 3DIGARS and 3DIGARS2.0 are obtained
from Mishra (2015) and Igbal et al. (2015) respectively. Addition-
ally, the results for independent test for 3DIGARS and 3DIGARS2.0



118 A. Mishra et al. / Journal of Theoretical Biology 398 (2016) 112-121

Table 3

Performance comparison of different energy functions on optimization datasets based on correct native count.

Decoy sets (no. of targets) Methods
DFIRE RWplus dDFIRE GOAP 3DIGARS 3DIGARS2.0 3DIGARS3.0

Moulder (20) 19 (-2.97) 19 (—2.84) 18 (—2.74) 19 (—3.58) 19 (—2.99) 19 (—2.68) 20 (—3.851)
Rosetta (58) 20 (-1.82) 20 (—147) 12 (-0.83) 45 (—3.70) 31 (-2.023) 49 (—2.987) 46 (—2.683)
[-Tasser (56) 49 (—4.02) 56 (—5.77) 48 (—5.03) 45 (—5.36) 53 (—4.036) 56 (—4.296) 56 (—5.573)
Weighted average in % 38.64 28.42 56.41 11.93 18.45 -1.61

Legend: entry format is native-count (z-score). Bold indicates best scores. Underscore indicates close to best scores.

Table 4

Performance comparison of different energy functions on independent test datasets based on correct native count.
Decoy sets (no. of targets) Methods

DFIRE RWplus dDFIRE GOAP 3DIGARS 3DIGARS2.0 3DIGARS3.0

4state_reduced (7) 6 (—3.48) 6 (—3.51) 7 (—4.15) 7 (—4.38) 6 (—3.371) 4(-2.642) 7 (—3.456)
fisa_casp3 (5) 4 (—4.80) 4(-517) 4(-4.83) 5(-5.27) 5 (—4.319) 5 (—4.682) 4 (—4.076)
hg_structal (29) 12 (-1.97) 12 (= 1.74) 16 (—1.33) 22 (-2.73) 12 (-1.914) 12 (- 1.589) 28 (—3.678)
ig_structal (61) 0(0.92) 0 (1.11) 26 (—1.02) 47 (- 1.62) 0 (0.645) 0(0.268) 60 (—2.526)
ig_structal_hires (20) 0(0.17) 0(0.32) 16 (—2.05) 18 (—2.35) 0 (-0.002) 1 (0.030) 20 (-2.378)
Weighted average in % 440.91 44091 72.46 20.20 417.39 440.91

Legend: entry format is native-count (z-score). Bold indicates best scores. Underscore indicates close to best scores.

were obtained by running these methods on the test sets under computed by

this work. New(ii.d) < d )(z Ad Nopsl. o) a2

exp\ts)s =\Tg3 ) Ag WNobs\L:Js Ucut
P dcut AdCth oS

4. Discussions

This section discusses different energy functions in a chron-
ological order based on which the proposed method, 3DIGARS3.0
is evolved.

4.1. Average reference state

The residue specific all-atom probability discriminatory func-
tion (RAPDF) based potential was proposed by Samudrala and
Moult (Samudrala and Moult, 1997), and uses averaging reference
state. It involves the computation of the conditional probabilities
for pairwise atom-atom interactions in proteins using statistical
observation of the native structures. RAPDF reference state com-
putes the probability of seeing any two atom types a and b in a
distant bin, S distance apart which can be represented as

P(Sap) =Y NSap)/Y > N(Sap)
ab

S ab

an

where, >~ ;N(Syp) is the total number of counts summed over all
pairs of atom types in a particular distance S, and the >"¢>, N(Sqp)
is the total number of counts summed over all pairs of atom types
summed over all the bins. As an averaging reference state, it does
not consider experimental structures as 3-dimensional space
where as DFIRE based potential considers proteins as a 3-
dimensional sphere having radius r* where « is a variable which
can be <2.

4.2. Finite ideal-gas reference state

In the distance-scaled, finite ideal-gas reference, (Zhou and
Zhou, 2002) acquired a pair-wise distribution function from sta-
tistical mechanics to formulate finite ideal-gas reference state. The
expected number of atom pairs in a spherical system was

where N,p(i,j,d) represents the observed number of pairs of
atoms, namely ith and jth atoms, at spatial distance d. The
dee=14.5 A is a cut off distance and o represents the radius of the
sphere which was determined by the best fit considering a num-
ber of points in 1011 finite protein size spheres. Eq. (12) is a for-
mulation obtained from the ideal gas reference state that is
implementable for a finite system.

4.3. Three-dimensional ideal gas reference state based energy
(EBDIGARS)

The 3-dimensional ideal reference state based energy function
(Mishra, 2015) is an all-atom knowledge based potential based on
the hydrophobic-hydrophilic model (HP model). It computes three
different interaction energy libraries, namely, (i) hydrophobic-
hydrophilic (HP), (ii) hydrophobic-hydrophobic (HH), and (iii)
hydrophilic-hydrophilic (PP). Each interaction library maintains a
uniform bin size of Ar = 0.5 A for all bins, and a cutoff distance 1,
equal to 15 A, where r represents each distant bin with values
ranging from 0.5 A to 15 A. The value of Arq,;=0.5 A as all bin sizes
are the same. These three different libraries are computed using
three different reference states. Reference state corresponding to
the hydrophobic-hydrophilic group can be written as

EXP — HP r A\ Ar . ..
Ni,/' (T') =\ —(Nobs—HP(L]» rcut)"’Nobs—HH(laJ» rcu[)
Tcut Areye

+ Nobs - PP(iaj: rcut))

where Nj¥*~""(r) represents the expected number of atom pairs at
distance r for the hydrophobic versus hydrophilic group, Nops_ yp(
i,j, Tcur) Tepresents number of observation of atom pairs ith and jth
at a cutoff distance obtained from the HP library, Nops_ un(i,Jj, Teut)
represents the number of observations of atom pairs ith and jth at
a cutoff distance obtained from HP library, Nyys_pp(i,j, Tcur) TEpre-
sents the number of observation of atom pairs ith and jth at a
cutoff distance obtained from the PP library and ay,, is the para-
meter that belongs to the HP group which is obtained by GA.

(13)
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Similarly, HH reference state, (r), and the PP reference
states, Ni;*~"P(r), varies fromN;;"~""(r), only in terms of the
parameter ap, and o, respectively. 4332 known protein struc-
tures were used to obtain the frequency computations. While
computing the frequency distributions, residues corresponding to
atom pairs are identified and classified to find the associated group
(HP, HH or PP) and simultaneously update the frequency count of
the group. Once the frequency distribution is computed, energy
scores are obtained. Energy scores for HP group can be written as

ESi = — In (Nops_ pp(i,j, 1) /NEFP~HP(r)) (14)

EXP—HH
NP

where ESffr represents the energy score of the atom pairs ith and
jth at a distance bin r for group HP, Nops_ pp(i.j, ) and Nif" =" (r)
are the observed and expected number of atom pairs ith and jth
respectively at a distance bin r for the HP group. Energy scores for
the other two groups HH and PP are also computed in a similar
fashion as in (4) (see (Mishra, 2015)). Finally, the minimum energy

of a protein structure can be obtained by (15)
TE :ﬁhpEHP +ﬂthHH —l—ﬂppEpp (15)

where, By, fnn and S, are 3D weights of contribution and Eyp, Eyy
and Epp are the energy scores obtained from the three groups HP,
HH and PP respectively, where Epp can be written as

Ewp=Y ES{T (16)
1),r

Additionally, Eyy and Epp are also calculated in a similar fashion
as in (16). Furthermore, a GA is used to determine the best possible
values of alpha (app, any and app), and optimized the contributions
of each of the three groups by determining their appropriate
weights S, Bun and S, along with the z-score to discriminate the
natives from their decoys, where the z-score of native structure is
defined as

7= Enative — Eaverage (1 7)
Esp

where, E,iive is the energy of native protein, Eaverage is the average
energy of all the decoys corresponding to its native protein
excluding the native protein itself and Esp is the standard devia-
tion of the energies of all decoy sets.

4.3.1. Predicted accessible surface area using REGAd®p

REGAd>p is a real value predictor framework that combines the
exact regularized regression with the optimization of weights by
GA (Igbal et al.,, 2015). The classical linear regression model can
result in a poor fit to the data. Therefore, the kernel of the basic
regression method is extended to a degree 3 polynomial equation.
This basis expansion is performed by inserting two extra column
vectors for each of the features which are the squares and cubes of
the original feature values. Extending the kernel in such a way
gives us the flexibility of model selection with higher order poly-
nomials. However, increasing the degree of polynomial can cause
overfitting, because of highly fluctuating weights. A model overfit
to training data can give poor performance on test datasets. To
overcome this overfitting problem, we implemented regulariza-
tion, which involves adding a penalty term (regularization para-
meter) to the error in order to shrink the value of the weights. We
performed a search for the best value of the regularization para-
meter within the range [ —100.0 to +100.0] with an interval size
equal to 2.0. The weights computed from regularization are further
optimized using a GA. The optimization is carried out to minimize
the minimization of Mean Absolute Error (MAE) as well as to
maximize the Pearson Correlation Coefficient (PCC) between
actual and predicted ASA values. The parameter values of our GA
implementation are: (i) population size=200, (ii) number of
generations=2000, (iii) chromosome length=number of

weights x number of bits for each weight=1155 x 18 bits, where
the weights 1155 come from features (55) x window-size (21), (iv)
elite rate=10%, (v) crossover rate=80% and (vi) mutation
rate="70%. While generating the initial population, 100 individuals
were taken from the output of regularization and the rest were
generated randomly. 10% best performing weight sets are always
forwarded to the next generation's population from the current
one. The high rate of mutation aided in finding new and improved
solutions within the large and complex search space of real ASA.
To select the candidates for crossover, we implemented the roul-
ette wheel selecting algorithm to sample highly fitted individuals
to be utilized for the next generation's population. Furthermore,
we integrated a post processing of predicted ASA values within our
GA to avoid the negative values of the predicted ASA. To keep the
ASA values practicable, the predicted negative values (as a result of
the natural extension of the equation towards the non-admissible
region) were replaced by zero.

4.3.2. Sequence-specific solvent-accessibility energy (E***)

Solvent accessible energy is closely related to the hydrophobic
interaction, stimulating the investigation into the low-frequency
internal motion of proteins and their biological function (Chou,
1988; Chen, 1977). We computed sequence-specific energy from
accessible surface area (ASA), E*5*, by modeling the error between
the actual and predicted ASA. We obtained the actual ASA (ASAAH)
and predicted ASA (ASAT™) of each residue for 1299 proteins
using the software DSSP (Wolfgang and Christian, 1983) and
REGAd®p (Igbal et al., 2015) respectively. The error between the
actual and predicted ASA (AASA, = ASARY _ASAP™) of a given
residue for a specific amino acid type is used to obtain the fre-
quency distribution (FD). To compute the frequency distribution,
we first calculate the max error AASA from the dataset of 1299
proteins which was found to be 240. We then divided the error
ranging from 0 to 195 with a bin width of 5 to obtain 39 bins of
equal size. The error range remaining after subtracting 195 from
240, which is equal to 45, is considered as the 40th bin of the
frequency table. To get all the 40 bins to be of equal size, we
normalized the values of the last bins by dividing them by 9 (45/
9=5). This resulted in a frequency distribution table of 20 rows
(for 20 different amino acid types) and 40 bins, each with an equal
size of 5. Mathematically, for each residue “k” of a specific amino
acid type, the frequency distribution table is updated as in (18)

FD(AA(k), Bin_Index) = FD(AA(k), Bin_Index)+1.0 (18)

where, amino acid type of the kth residue is obtained by AA(k) and
Bin_Index of the kth residue can be expressed as in (19)

Bin_Index = abs(AASA, = ASA, — ASA,P™*%) /Bin_Width (19)

where, Bin_Width=5. Once we update the frequency table for all
the 1299 proteins residues of the dataset, cells for which the fre-
quency count is found to be zero are replaced by a small value of
10~6. The foregoing process provides us with a frequency table
which is further used to compute the probability P of each cell
given by (20)

P = FD(AA(k), Bin_Index)/TF (20)

where, TF is the sum of the counts of each amino acid type of all
the bins in the frequency table. The energy score library (ESL) for
sequence-specific solvent-accessibility is obtained by (21)

ESL= — In (Bin_Value x P) (21)

where, Bin_Value is the frequency count of each cell. Described
above is the method to obtain the ESL. We use this ESL to compute
the sequence-specific solvent-accessible energy EAS? for a given
protein structure to compute, the E*5A of a given protein sequence,
we first compute the actual and predicted ASA of each residue (R;)
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using DSSP and REGAd3p software respectively. Next, we pick the
energy associated with each reside from ESL based on the differ-
ence between the actual and predicted ASA values. We use the
error between the actual and predicted ASA to compute the
Bin_Index which is obtained from (19) and then obtain the energy
for each residue “k” by (22)

Ex = ESL(AA(k), Bin_Index) (22)

Finally, the energy of the complete protein sequence of length
N is computed by (23)

N
EMh = " Ey (23)
K=1

4.3.3. Energy function, 3DIGARS2.0
3DIGARS2.0 (Igbal et al., 2015) is an optimized combination of

the above mentioned 3DIGARS energy, E3PISARS and sequence-
specific solvent-accessibility energy, E*SA, given by
E3DIGARS2.0 _ E3DIGARS (1, o, ASA) 24)

where, w is the variable ranging from 0 to 2, whose best possible
value is obtained using a GA. The GA parameters were population
size=300, elite rate=5%, crossover rate=90% and mutation
rate=50%. The stopping criteria, max_iteration was set to 2000
iterations. The objective function was a linear combination of the
correct count and the average z-score of the three most challen-
ging decoy sets: Moulder, Rosetta and I[-Tasser. Correct count is
defined as the number of correctly identified native protein
structures from its decoy sets. A better energy function assigns
highest negative energy to the native protein compared to its
decoy sets and thus is able to classify native proteins from its
decoy sets more efficiently. The count of such correctly identified
native protein structures is termed as correct count.

5. Conclusions

Predicting the 3D structure of a protein from its amino acid
sequence alone has established significant popularity in the past
two decades because of its wide spread importance in drug design
as well as design of novel enzymes. Energy functions are one of
the fundamental components for solving protein structure and
folding prediction problems. Hence, we develop a new energy
function, 3DIGARS3.0 to improve the accuracy of tertiary protein
structure prediction or protein folding methods. Being motivated
by the fact that the 3D structural information assists the
advancement of the accuracy of the energy function, we introduce
two new 3D structural features uPhi and uPsi. We linearly combine
these uPhi and uPsi based energies with our prior energy com-
ponents, 3DIGARS and predicted ASA based energies. This linear
combination was further optimized using three groups of chal-
lenging decoy data-sets using a GA and tested on five independent
test datasets. The importance of individual features uPhi and uPsi
was analyzed by taking different combinations of uPhi, uPsi and
our prior energy component and code function. In addition, we
also analyzed the effect of addition of orientation angles by
dDFIRE. The addition of uPhi and uPsi to 3DIGARS and ASA out-
performed all other combinations based on the independent test
datasets. 3DIGARS3.0 outperformed the state-of-the-arts approa-
ches such as DFIRE, RWplus, dDFIRE, GOAP, 3DIGARS and
3DIGARS2.0 by 440.91%, 440.91%, 72.46%, 20.20%, 417.39% and
440.91% respectively, based on the independent test datasets.

Supplementary Content

The software is available online http://cs.uno.edu/~ tamyjid/
Software/3DIGARS/3DIGARS3.0.zip.

Acknowledgments

We gratefully acknowledge the Louisiana Board of Regents
through the Board of Regents Support Fund, LEQSF (2013-16)-RD-
A-19. We would also like to thank Mr. Glenn Robert McLellan for
his helpful reviews for English Language.

References

Berardi, M.]., et al., 2011. Mitochondrial uncoupling protein 2 structure determined
by NMR molecular fragment searching. Nature 476, 109-113.

Berman, H., et al., 2000. The protein data bank. Nucl. Acids Res. 28, 235-242.

Bhandari, D., Murthy, C.A., Pal, S.K.,, 1996. Genetic algorithm with elitist model and
its convergence. Int. J. Pattern Recognit. Artif. Intell. 10 (06), 731-747.

Borguesana, B., et al,, 2015. APL: Anangleprobabilitylisttoimproveknowledge-based
metaheuristics forthethree-dimensionalproteinstructureprediction. Comput.
Biol. Chem. 59, 142-157.

Briischweiler, S., et al., 2015. Substrate-modulated ADP/ATP-transporter dynamics
revealed by NMR relaxation dispersion. Nat. Struct. Mol. Biol. 22, 636-641.
Brooks, B.R., et al., 1983. CHARMM: A program for macromolecular energy, mini-

mization, and dynamics calculations. J. Comput. Chem. 4, 187-217.

Cai, Y.-D., 2003. Predicting protein quaternary structure by pseudo amino acid
composition. Protein: Struct. Func. Genet. 53, 282-289.

Carlacci, L., Chou, K.-C., Maggiora, G.M., 1991. A heuristic approach to predicting the
tertiary structure of bovine somatotropin. Biochemistry 30, 4389-4398.

Carter, D.B., Chou, K.-C., 1998. A model for structure-dependent binding of Congo
red to Alzheimer P-amyloid fibrils. Neurobiol. Aging 19, 37-40.

Chen, N.-Y., 1977. The biological functions of low-frequency phonons. Sci. Sin. 20,
447-457.

Chen, W., et al., 2013. iRSpot-PseDNC: identify recombination spots with pseudo
dinucleotide composition. Nucl. Acids Res., 41 (p. gks1450).

Chou, K.C,, et al.,, 1992. An energy-based approach to packing the 7-helix bundle of
bacteriorhodopsin. Protein Sci. 1, 810-827.

Chou, K.C., 2011. Some remarks on protein attribute prediction and pseudo amino
acid composition. J. Theor. Biol. 273 (1), 236-247.

Chou, K.-C,, et al., 1985. Interactions between an alpha-helix and a beta-sheet.
Energetics of alpha/beta packing in proteins. J. Mol. Biol. 186, 591-609.

Chou, K.-C., 1988. Low-frequency collective motion in biomacromolecules and its
biological functions. Biophys. Chem. 30, 3-48.

Chou, K.-C., 2004. Structural bioinformatics and its impact to biomedical science.
Curr. Med. Chem. 11, 2105-2134.

Chou, K.-C., Scheraga, H.A., 1982. Origin of the right-handed twist of beta-sheets of
poly (LVal) chains. Proc. Nat. Acad. Sci. 79, 7047-7051.

Chou, K.-C., Carlacci, L., 1991. Energetic approach to the folding of a/f} barrels.
Protein: Struct. Funct. Bioinf. 9, 280-295.

Chou, K.-C., Zhang, C.-T., 1995. Prediction of protein structural classes. Crit. Rev.
Biochem. Mol. Biol. 30, 275-349.

Chou, K.-C,, Cai, Y.-D., 2005. Prediction of membrane protein types by incorporating
amphipathic effects. J. Chem. Inf. Model. 45, 407-413.

Chou, K.-C., Maggiora, G.M., Scheraga, H.A., 1992. Role of loop-helix interactions in
stabilizing four-helix bundle proteins. Proc. Nat. Acad. Sci. 89, 7315-7319.
Chou, K.-C., Wei, D.-Q., Zhong, W.-Z., 2003. Binding mechanism of coronavirus main
proteinase with ligands and its implication to drug design against SARS. Bio-

chem. Biophys. Res. Commun. 308, 148-151.

Cornell, W.D., et al., 1995. A second generation force field for the simulation of
proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117,
5179-5197.

Dehzangi, A., et al., 2015. Gram-positive and Gram-negative protein subcellular
localization by incorporating evolutionary-based descriptors into Chou's gen-
eral PseAAC. ]. Theor. Biol. 364, 284-294.

Ding, H., et al,, 2014. iCTX-type: a sequence-based predictor for identifying the
types of conotoxins in targeting ion channels. BioMed. Res. Int. 2014.

Fogolari, F, et al.,, 2007. Scoring predictive models using a reduced representation
of proteins: model and energy definition. BMC Struct. Biol.

Gohlke, H., Hendlich, M., Klebe, G., 2000. Knowledge-based scoring function to
predict protein-ligand interactions. ]. Mol. Biol. 295, 337-356.

Hooft, RW.,, Sander, C., Vriend, G., 1997. Objectively judging the quality of a protein
structure from a Ramachandran plot. Comput. Appl. Biosci. 13, 425-430.

Hoque, M.T., et al, 2010. DFS generated pathways in GA Crossover for protein
structure prediction. Neurocomputing 73, 2308-2316.

Hoque, Md. Tamyjidul, et al., 2016. sDFIRE: sequence-specific statistical energy
function for protein structure prediction by decoy selections. J. Comput. Chem.

Hoque, T., Chetty, M., Sattar, A., 2009. Extended HP model for protein structure
prediction. J. Comput. Biol. 16, 85-103.


http://cs.uno.edu/~tamjid/Software/3DIGARS/3DIGARS3.0.zip
http://cs.uno.edu/~tamjid/Software/3DIGARS/3DIGARS3.0.zip
http://cs.uno.edu/~tamjid/Software/3DIGARS/3DIGARS3.0.zip
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref1
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref1
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref1
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref2
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref2
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref3
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref3
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref3
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref4
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref4
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref4
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref4
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref5
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref5
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref5
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref6
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref6
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref6
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref7
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref7
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref7
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref8
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref8
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref8
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref9
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref9
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref9
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref9
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref9
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref10
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref10
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref10
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref11
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref11
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref12
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref12
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref12
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref13
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref13
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref13
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref14
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref14
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref14
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref15
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref15
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref15
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref16
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref16
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref16
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref17
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref17
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref17
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref18
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref18
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref18
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref18
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref18
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref18
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref18
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref19
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref19
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref19
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref20
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref20
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref20
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref21
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref21
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref21
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref22
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref22
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref22
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref22
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref23
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref23
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref23
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref23
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref24
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref24
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref24
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref24
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref25
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref25
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref26
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref26
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref27
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref27
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref27
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref28
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref28
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref28
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref29
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref29
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref29
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref30
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref30
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref31
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref31
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref31

A. Mishra et al. / Journal of Theoretical Biology 398 (2016) 112-121 121

Igbal, S., Mishra, A., Hoque, T., 2015. Improved prediction of accessible surface area
results in efficient energy function application. J. Theor. Biol. 380, 380-391.

Jernigan, R.L., Bahar, L., 1996. Structure-derived potentials and protein simulations.
Curr. Opin. Struct. Biol. 6, 195-209.

Jia, J., et al,, 2015. iPPI-Esml: an ensemble classifier for identifying the interactions
of proteins by incorporating their physicochemical properties and wavelet
transforms into PseAAC. J. Theor. Biol. 377, 47-56.

Jia, J., et al,, 2015. Identification of protein-protein binding sites by incorporating
the physicochemical properties and stationary wavelet transforms into pseudo
amino acid composition. J. Biomol. Struct. Dyn., 1-16.

Kabsch, W., Sander, C., 1983. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers 22,
2577-2637.

Khan, Z.U.,, Hayat, M., Khan, M.A,, 2015. Discrimination of acidic and alkaline
enzyme using Chou's pseudo amino acid composition in conjunction with
probabilistic neural network model. J. Theor. Biol. 365, 197-203.

Koretke, K.K., Luthey-Schulten, Z., Wolynes, P.G., 1996. Self-consistently optimized
statistical mechanical energy functions for sequence structure alignment.
Protein Sci. 5, 1043-1059.

Krivov, G.G., Shapovalov, M.V., Dunbrack, R.L., 2009. Improved prediction of protein
side-chain conformations with SCWRL4. Protein: Struct. Func. Bioinf. 77,
778-795.

Kumar, R, et al,, 2015. Prediction of f-lactamase and its class by Chou's pseudo-
amino acid composition and support vector machine. J. Theor. Biol. 365,
96-103.

Lab, Z., 2014. Protein structure decoys (July). Available from: ¢http://zhanglab.ccmb.
med.umich.edu/decoys/).

Lehninger, A.L, Nelson, D.L, Cox, M.M., 2005. Principles of Biochemistry. W.H.
Freeman and Company, New York, USA.

Lesk, A.M., 2004. Introduction to Protein Science, 2nd ed. Oxford University Press,
New York, p. 310.

Levitt, M., 2014. Accurate Modeling of Protein Conformation by Automatic Segment
Matching. [cited 2014; Web (July). Available from: (http://www.ncbi.nlm.nih.
gov/pubmed/1640463]).

Lin, H., et al,, 2014. iPro54-PseKNC: a sequence-based predictor for identifying
sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composi-
tion. Nucl. Acids Res. 42, 12961-12972.

Lodish, H., et al., 1990. Molecular Cell Biology, 5th ed. Scientific American Books, W.
H. Freeman, New York, USA.

Mandal, M., Mukhopadhyay, A., Maulik, U., 2015. Prediction of protein subcellular
localization by incorporating multiobjective PSO-based feature subset selection
into the general form of Chou's PseAAC. Med. Biol. Eng. Comput. 53, 331-344.

Mishra, A., 2015. Three-Dimensional Ideal Gas Reference State based Energy
Function, Department of Computer Science, University of New Orleans ¢http://
scholarworks.uno.edu/).

Mitchell, J.B., et al., 1999. BLEEP—potential of mean force describing protein-ligand
interactions: II. Calculation of binding energies and comparison with experi-
mental data. J. Comput. Chem. 20, 1177-1185.

Mitchell, ].B., et al., 1999. BLEEP—potential of mean force describing protein-ligand
interactions: I. generating potential. ]. Comput. Chem. 20, 1165-1176.

Muegge, 1., Martin, Y.C., 1999. A general and fast scoring function for protein-ligand
interactions: a simplified potential approach. ]. Med. Chem. 42, 791-804.

OuYang, B., et al., 2013. Unusual architecture of the p7 channel from hepatitis C
virus. Nature 498, 521-525.

Park, B., Levitt, M., 1996. Energy functions that discriminate X-ray and near-native
folds from well-constructed decoys. ]. Mol. Biol. 258, 367-392.

PDB, R. Advanced Search Interface. February 2014; Available from: (http://www.
rcsb.org/pdb/search/advSearch.do’).

Ramachandran, G.N., Ramachandran, C., Sasisekharan, V., 1963. Stereochemistry of
polypeptide chain configurations. J. Mol. Biol. 7, 95-99.

Sali, A., 2014. Decoy Models (July). Available from: (http://salilab.org/john_decoys.
html).

Samudrala, R., Moult, J., 1997. An all-atom distance-dependent conditional prob-
ability discriminatory function for protein structure prediction. J. Mol. Biol. 275,
895-916.

Shen, H.-B., Chou, K.-C., 2007. A fusion classifier for predicting the subcellular
localization of viral proteins within host and virus-infected cells. Biopolymers
85, 233-240.

Simons, K.T., et al., 1997. Assembly of protein tertiary structures from fragments
with similar local sequences using simulated annealing and bayesian scoring
functions. J. Mol. Biol. 268, 209-225.

Tanaka, S., Scheraga, H.A., 1976. Medium- and long-range interaction parameters
between amino acids for predicting three-dimensional structures of proteins.
Macromolecules 9, 945-950.

Tobi, D., Elber, R., 2000. Distance-dependent, pair potential for protein folding:
results from linear optimization. Protein: Struct. Funct. Bioinf. 41, 40-46.

Tsai, ]., et al., 2003. An improved protein decoy set for testing energy functions for
protein structure prediction. Protein: Struct. Funct. Bioinf. 53, 76-87.

Wang, S.-Q., et al., 2009. Insights from investigating the interaction of oseltamivir
(Tamiflu) with neuraminidase of the 2009 H1N1 swine flu virus. Biochem.
Biophys. Res. Commun. 386, 432-436.

Wolfgang, K., Christian, S., 1983. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers 22
(12), 2577-2637.

Xu, Y., et al, 2014. iNitro-Tyr: prediction of nitrotyrosine sites in proteins with
general pseudo amino acid composition. Plos One, 9, p. e105018.

Yang, J., Zhang, Y., 2015. I-TASSER server: new development for protein structure
and function predictions. Nucl. Acids Res. 43, W174-W181.

Yang, Y., Zhou, Y., 2008. Specific interactions for ab initio folding of protein terminal
regions with secondary structures. Proteins 72, 793-803.

Zhang, C., et al,, 2005. A knowledge-based energy function for protein-ligand,
protein-protein, and protein-DNA complexes. ]. Med. Chem. 48, 2325-2335.

Zhang, J., Zhang, Y., 2010. A novel side-chain orientation dependent potential
derived from random-walk reference state for protein fold selection and
structure prediction. Plos One 5 (10).

Zhou, H., Zhou, Y., 2002. Distance-scaled, finite ideal-gas reference state improves
structure-derived potentials of mean force for structure selection and stability
prediction. Protein Sci. 11, 2714-2726.

Zhou, H., Skolnick, J., 2011. GOAP: a generalized orientation-dependent, all-atom
statistical potential for protein structure prediction. Biophys. J. 101, 2043-2052.

Zi Liu, et al, 2015. iDNA-Methyl: identifying DNA methylation sites via pseudo
trinucleotide composition. Anal. Biochem. 474, 69-77.


http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref32
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref32
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref32
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref33
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref33
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref33
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref34
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref34
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref34
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref34
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref35
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref35
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref35
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref35
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref36
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref36
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref36
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref36
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref37
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref37
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref37
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref37
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref38
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref38
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref38
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref38
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref39
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref39
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref39
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref39
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref40
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref40
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref40
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref40
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref40
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref40
http://zhanglab.ccmb.med.umich.edu/decoys/
http://zhanglab.ccmb.med.umich.edu/decoys/
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref41
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref41
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref42
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref42
http://www.ncbi.nlm.nih.gov/pubmed/1640463%5d
http://www.ncbi.nlm.nih.gov/pubmed/1640463%5d
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref43
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref43
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref43
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref43
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref44
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref44
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref45
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref45
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref45
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref45
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref46
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref46
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref46
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref46
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref47
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref47
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref47
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref48
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref48
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref48
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref49
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref49
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref49
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref50
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref50
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref50
http://www.rcsb.org/pdb/search/advSearch.do
http://www.rcsb.org/pdb/search/advSearch.do
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref51
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref51
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref51
http://salilab.org/john_decoys.html
http://salilab.org/john_decoys.html
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref52
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref52
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref52
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref52
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref53
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref53
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref53
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref53
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref54
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref54
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref54
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref54
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref55
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref55
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref55
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref55
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref56
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref56
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref56
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref57
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref57
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref57
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref58
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref58
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref58
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref58
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref59
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref59
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref59
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref59
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref60
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref60
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref61
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref61
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref61
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref62
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref62
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref62
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref63
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref63
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref63
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref64
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref64
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref64
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref65
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref65
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref65
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref65
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref66
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref66
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref66
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref67
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref67
http://refhub.elsevier.com/S0022-5193(16)00176-4/sbref67

	Discriminate protein decoys from native by using a scoring function based on ubiquitous Phi and Psi angles computed for...
	Introduction
	Material and methods
	uPhi, uPsi based energy (EuPhi, EuPsi)
	The 3DIGARS3.0 energy function

	Datasets and results
	Datasets
	Training datasets
	Training dataset for 3DIGARS (E3DIGARS)
	Training dataset for sequence-specific solvent-accessibility energy (EASA)
	Training dataset for uPhi and uPsi energies (EuPhi, EuPsi)

	Optimization datasets
	Moulder decoy dataset
	Rosetta decoy dataset
	I-Tasser decoy dataset

	Independent test datasets
	4stateunderscorereduced decoy dataset
	fisaunderscorecasp3 decoy dataset
	hgunderscorestructal decoy dataset
	igunderscorestructual decoy dataset
	igunderscorestructualunderscorehires decoy dataset


	Results

	Discussions
	Average reference state
	Finite ideal-gas reference state
	Three-dimensional ideal gas reference state based energy (E3DIGARS)
	Predicted accessible surface area using REGAd3p
	Sequence-specific solvent-accessibility energy (EASA)
	Energy function, 3DIGARS2.0


	Conclusions
	Supplementary Content
	Acknowledgments
	References




