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Abstract—No single algorithm suits the best for the protein
structure prediction problem. Therefore, researchers have tried
hybrid techniques to mix the power of different strategies to gain
improvements. In this paper, we present a hybrid search frame-
work that embeds a tabu-based local search within a population
based genetic algorithm. We applied our hybrid algorithm on
simplified protein structure prediction problem. We use a low-
resolution ab initio search method with the hydrophobic-polar
energy model and face-centred-cubic lattice. Within the genetic
algorithm, we apply local search in two different situations: i) only
once at the beginning and ii) every time at search stagnation. At
the beginning, we apply local search to improve the randomly
generated individuals and use them as an initial population for
the genetic algorithm. Later, we apply local search after applying
a random-walk at situations where the genetic algorithm gets
stuck. In both cases, the use of local search is to improve the
randomised solutions quickly. We experimentally show that our
hybrid approach outperforms the state-of-the-art approaches.

Keywords—Hybrid Algorithm; Local Search; Genetic Algorithm;
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I. INTRODUCTION

Proteins are essentially sequences of amino acids. They adopt
specific folded three-dimensional structures to perform specific
tasks. The function of a given protein is determined by its
native structure, which has the lowest possible free energy
level. Nevertheless, misfolded proteins cause many critical
diseases such as Alzheimer’s disease, Parkinson’s disease, and
Cancer [1], [2]. Protein structures are important in drug design
and biotechnology.

Protein structure prediction (PSP) is computationally a very
hard problem [3]. Given a protein’s amino acid sequence, the
problem is to find a three dimensional structure of the protein
such that the total interaction energy amongst the amino acids
in the sequence is minimised. The protein folding process
that leads to such structures involves very complex molecular
dynamics [4] and unknown energy factors. Researchers have
used discretised lattice-based structures and simplified energy
models [5]-[7] in an hierarchical approach for high resolution
protein structure prediction. However, the complexity of the
simplified problem still remains challenging.

There are a large number of existing search algorithms that
attempt to solve the PSP problem by exploring feasible struc-
tures called conformations. For population based approaches,
a genetic algorithm (GA™) [8] reportedly produces the state-
of-the-art results. However, for local search approaches, spiral
search (SS-Tabu) [9], a tabu-based local search produces the
best results.
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In general, the success of both single-point search or popula-
tion based search algorithms crucially depends on the balance
of diversification and intensification of the exploration. How-
ever, these algorithms often get stuck or stall in local minima.
As a result, they perform poorly on large sized (length > 100
amino acids) proteins. Any further progress to these algorithms
require addressing the above issues appropriately.

In this paper, we present a hybrid search technique that embeds
the Spiral Search algorithm (SS-Tabu) [9] within an enhanced
population based Genetic Algorithm (GA™) [8]. The random-
walk [10] is a major addition in GA™ to enhance the GA’s
performance particularly when it get stuck. In most GAs,
after a number of generations, the individual conformations
in the population become similar. The search often get stuck
in this situation (called local minima). In [10], a random-
walk algorithm is applied to break the stagnation. In random-
walk, operators are used randomly to generate new solutions.
However, after applying long random-walks, the quality of
the individual solutions in the population drops significantly.
Typically GAs take long time to regain from the dropped
energy level but the local search can regain the energy level
quickly. We apply local search in two different stages within
GA™: i) only once at the beginning and ii) every time at
search stagnation. At the beginning of the search, we apply
local search to improve the individuals that help GA™ start
with a rich initial population. We also apply local search at
stagnation after applying a random-walk [10]. The random-
walk algorithm diversifies the population widely. However, the
SS-Tabu is applied following the random-walk to improve the
diversified solutions quickly. In summary, the GA™ is widening
the search space and the SS-Tabu is deepening the search.
We tested our hybrid algorithm on simplified protein structure
prediction (PSP) problem. In our low-resolution ab initio
method, we use hydrophobic-polar (HP) energy model for
conformation evaluation and face-centred-cubic (FCC) lattice
for structure mapping. We experimentally show that our hybrid
algorithm preforms significantly better than the state-of-the-art
approaches.

The rest of the paper is organized as follows: Section II
illustrates the PSP problem and simplified models for PSP;
Section III presents the related work; Section IV and V
respectively present the GA™ and the SS-Tabu framework
used in our hybrid approach; Section VI describes our hybrid
approach in detail; Section VII discusses and analyzes the
experimental results; and finally, Section VIII presents our
conclusions and outlines our future work.



II. BACKGROUND

Homology modeling, protein threading and ab initio are three
computational approaches used in protein structure prediction.
Prediction quality of homology modeling and protein threading
depends on the sequential similarity of previously known
protein structures. However, our work is based on the ab initio
approach that only depends on the amino acid sequence of
the target protein. Levinthal’s paradox [11] and Anfinsen’s
hypothesis [12] are the basis of ab initio method for PSP. The
idea was originated in 1970 when it was demonstrated that
all information needed to fold a protein resides in its amino
acid sequence. In our simplified protein structure prediction
model, we use 3D FCC lattice for conformation mapping, HP
energy model for conformation evaluation, and a hydrophobic-
core centric local search algorithm (SS-Tabu) for conformation
search. The simplified models, local search, and genetic algo-
rithms are described below.

A. Simplified Model

To explore an astronomically large search space and to evaluate
the conformations using a real energy model is a big challenge
for existing search algorithms in PSP. In our approach, we
use 3D FCC lattice points for conformation mapping and
hydrophobic-polar (HP) energy model to keep the complexity
manageable. The 3D FCC lattice and the HP energy model are
briefly describe below.

Figure 1: A unit 3D FCC lattice with 12 basis vectors on the
Cartesian coordinates.

3D FCC Lattice: The FCC lattice has the highest packing den-
sity compared to the other existing lattices [13]. In FCC, each
lattice point (the origin in Figure 1) has 12 neighbours with
12 basis vectors (1,1,0), (-1, —1,0), (-=1,1,0), (1,—1,0), (0,1,1),
(0,1,-1), (1,0,1), (1,0,—-1), (0,—1,1), (-=1,0,1), (0,—1,—1), and
(=1,0,—1). The hexagonal closed pack (HCP) lattice, also
known as cuboctahedron, was used in [14]. In HCP, each lattice
point has 12 neighours that correspond to 12 basis vertices with
real-numbered coordinates. The real numbers cause the loss of
structural precision for PSP. In simplified PSP, conformations
are mapped on the lattice by a sequence of basis vectors, or
by the relative vectors that are relative to the previous basis
vectors in the sequence.

HP Energy Model: The 20 constituent amino acids of proteins
are broadly divided into two categories based on the hydropho-
bicity of the amino acids: (a) hydrophobic amino acids (Gly,
Ala, Pro, Val, Leu, Ile, Met, Phe, Tyr, Trp) denoted as H; and
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Figure 2: HP energy model [15]

(b) hydrophilic or polar amino acids (Ser, Thr, Cys, Asn, Gln,
Lys, His, Arg, Asp, Glu) denoted as P. In the HP model [15],
when two non-consecutive hydrophobic amino acids become
topologically neighbours, they contribute a certain amount
of negative energy, which for simplicity is shown as —1 in
Figure 2. The total energy (£) of a conformation based on
the HP model becomes the sum of the contributions of all
pairs of non-consecutive hydrophobic amino acids as shown
in Equation 1.

E = Z Cij.€ij (1)

i<j—1
Here, ¢;; = 1 if amino acids ¢ and j are non-consecutive
neighbours on the lattice, otherwise 0; and e;; = —1 if ith

and jth amino acids are hydrophobic, otherwise 0.

Protein structures have hydrophobic cores (H-core) that hide
the hydrophobic amino acids from water and expose the polar
amino acids to the surface to be in contact with the surrounding
water molecules [16]. H-core formation is the main objective
of HP based PSP. To build H-cores, the total distance of all H-
H pairs is minimised in [17]. A predefined motif based segment
replacement strategy is applied in [14].

B. Local Search

Starting from an initial solution, local search algorithms move
from one solution to another to find a better solution. Local
search algorithms are well known for efficiently producing
high quality solutions, which are difficult for systematic search
approaches. However, they are incomplete [18], and suffer
from revisitation and stagnation. Restarting the whole or parts
of a solution remains the typical approach to deal with such
situations.

Tabu Meta-heuristic: Tabu meta-heuristic [19], [20] enhances
the performance of local search algorithms. It maintains a
short-term memory structure to remember the local changes
of a solution. Then, any local changes for those stored posi-
tions are forbidden for certain number of subsequent iteration
(known as tabu tenure).

C. Genetic Algorithms

GAs are a population-based search for optimisation problems.
A genetic algorithm maintains a set of solutions known as
population. In each generation, it generates a new population
from the current population using a given set of genetic
operators known as crossover and mutation. It then replaces
inferior solutions by superior newly generated solutions to
get a better current population. A typical crossover operator



randomly splits two solutions at a randomly selected crossover
point and exchanges parts between them (Fig. 3a). A typical
mutation operator alters a solution at a random point (Fig. 3b).
In the case of PSP, conformations are regarded as solutions of
a GA. Below we describe genetic operators used in PSP.

Parent 1

Parent 2

BoBgEREang

Crossover

Old solution
0/0/0/0/0/0/0/0/0|0

0/0/0/0/0/0|0/0|0/0

ojojofYo/o/ojojofo

Child 1

Child 2 New solution

(a) Crossover (b) Mutation

Figure 3: Typical (a) crossover and (b) mutation operators

Crossover Operators: The crossover operators are applied on
two selected parent conformations to exchange their parts to
generate children conformations. In a single-point crossover,
both parents are splitted at a single point (Fig. 4 a) while in a
multi-point crossover they are splitted at more than one point.
Nevertheless, the crossover operations succeed if they produce
conformations that satisfy the self-avoiding walk constraint.

Mutation Operators: The mutation operators are applied on
a single conformation. The operators can perform single-
point change or multi-point changes. The mutation operations
succeed if the resultant conformation remains a self-avoiding
walk on the lattice.

III. RELATED WORK

Different types of metaheuristic have been used in solving
the simplified PSP problem. These include Monte Carlo Sim-
ulation [21], Simulated Annealing [22], Genetic Algorithms
(GA) [23], [24], Tabu Search with GA [25], Tabu Search with
Hill Climbing [26], Ant Colony Optimisation [27], Immune
Algorithms [28], Tabu-based Stochastic Local Search [17],
[29], and Constraint Programming [30]. Cebrian et al. [17]
used tabu-based local search, and Shatabda et al. [29] used
memory-based local search with tabu heuristic and achieved
the state-of-the-art results. However, Dotu et al. [30] used
constraint programming and found promising results but only
for smaller sized (length < 100 amino acids) proteins. Besides
local search, Unger and Moult [23] applied population based
search algorithms (known as GA) to PSP and found their
method to be more promising than the Monte Carlo based
methods [21]. They used absolute encodings on the square
and cubic lattices for HP energy model. Later, Patton [31]
used relative encodings to represent conformations and a
penalty method to enforce the self-avoiding walk constraint.
The GA has been used by Hoque et al. [14] for cubic, and 3D
HCP lattices. They used DFS-generated pathways [32] in GA
crossover for protein structure prediction. They also introduced
a twin-removal operator [33] to remove duplicates from the
population to prevent the search from stalling.

No single algorithm suits the best for the protein structure
prediction problem. Therefore, researchers have tried hybrid
techniques to mix the power of different strategies to gain
improvements. Ullah et al. in [34] and [35] combined local
search with constraint programming. They used a 20 x 20 [36]
energy model on FCC lattice and found promising results.
In another hybrid approach [37], tabu meta-heuristic was
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combined with a genetic algorithm in two-dimensional HP
model to observe crossover and mutation rate over time.

However, a new genetic algorithm GA™ [8] and a tabu based
local search algorithm Spiral Search [9] produce the current
state-of-the-art results for HP energy model on 3D FCC lattice.

IV. GAT: AN ENHANCED GENETIC ALGORITHM

GA™ [8] is an enhanced genetic algorithm for simplified PSP
problem. It uses HP energy model and FCC lattice. The
pseudocode of GA™ is presented in Algorithm 1. It uses
an exhaustive generation approach to diversify the search, a
hydrophobic core-directed macro move to intensify the search,
and a random-walk algorithm to recover from stagnation.

Algorithm 1: gaPlus(opR,rwT)

1 op: Operators, ¢, ¢’: Conformations

2 OpR: Operator selection probabilities

3 curP,newP: Current and new populations
4 rwT: Number of non-improving

5 generations before random walk.

6 1/
7 initPopulation(curP)

s foreach Generation until timeout do
9 selectOperator(op, opR)
10 if mutation(op) then

1 foreach c € curP do

12 newP.add(mutConf(c))

13 else //crossover (0p)

14 while —~full(newP) do

15 ¢, < randomConfs(curP)
16 newP.add(crsConfs(c,c))
17 if ~improved(newP,rwT) then

18 randomWalk(newP)

19 curP < newP
20 return bestConformation(curP)

A. Exhaustive Generation

Unlike traditional GA, in GA™T, the use of randomness is
reduced significantly by an exhaustive generation approach.
For mutation operators, GA' adds one resultant conforma-
tion for each conformation in the current population to the
new population. Operators are applied to all possible points
exhaustively until finding a better solution than the parent.
If no better solution is found, the parent survives through
the next generation. On the other hand, for crossover op-
erators, two resultant conformations are added to the new
population from two randomly selected parent conformations.
Crossover operators generate child conformations by applying
the crossover operator in all possible points on two randomly
selected parents. The best two conformations from the parents
and the children are then become the resultant conformations
for the next generation.

B. Macro-move

Macro-move is a composite operator (Figure 5) that uses a
series of diagonal-moves (Figure 4 ¢) on a given conformation
to build the H-core around the hydrophobic-core-center (HCC).
The macro-move squeezes the conformation and quickly forms



Crossover operator
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a) single-point crossover b) rotation
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Figure 4: The operators that are used in our GA1 on 3D FCC lattice space. For simplification and easy understanding the figures are presented in 2D space.
The black solid circles represent the hydrophobic amino acids and others are hydrophilic.

the H-core. In GA™T, macro-move is used as a mutation
operator.

Figure 5: A macro move operator comprising a series of diagonal
moves. For simplification and easy understanding the figures are
presented in 2D space.

In macro-move, the HCC is calculated by finding arithmetic
means of z, y, and z coordinates of all hydrophobic amino
acids. The macro-move for a given number of iterations
repeatedly applies the diagonal move either at each P- or
at each H-type amino acid positions. Whether to apply the
diagonal move on P- or H-type amino acids is determined
by using a Bernoulii distribution with probability p (typically
p = 20% for P-type amino acids). For a P-type amino acid,
the first successful diagonal move is considered. Whereas, for
a H-type amino acid, the first successful diagonal move that
does not increase the Cartesian distance of the amino acid from
the HCC is taken. All the amino acids are traversed and the
successful moves are applied as one composite move.

C. Stagnation Recovery

In GA™T, when the search stuck in a local minima, a random-
walk algorithm is applied to recover from stagnation. This
algorithm helps break the pre-matured H-cores of the individ-
uals. To restart, the GA™ accepts those conformations that are
close to the respective parent conformations in terms of energy
level, and have possible maximum structural diversity from
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the respective parent conformations. For genetic algorithms,
random-walk is very effective [10] to recover from stagnation.

D. The Primitive GA Operators

Along with exhaustiveness, macro-move and random-walk, the
primitive operators (as shown in Fig 4) that are implemented in
GAT™ are single-point crossover (Figure 4 a), rotation mutation
(Figure 4 b), diagonal move (Figure 4 ¢), pull moves (Figure 4
d), and tilt moves (Figure 4 e)

V. SS-TABU: THE SPIRAL SEARCH

Spiral search (SS-Tabu) [9] is a local search guided by tabu
meta-heuristics. In SS-Tabu, the diagonal move operator (as
shown in Figure 4 c) is used in building H-core in a spiral
fashion. The move is just a corner-flip to an unoccupied lattice
point. A tabu list is maintained to control the amino acids
to involve in diagonal move. The pseudocode of SS-Tabu,
as shown in Algorithm 2, is composed of moves selection
(Algorithm 2: Line 4 and 9 ) and local minima handling sub-
procedures (Algorithm 2: Line 20 and 24 ).

A. Move Selection

In move selection, the H amino acids get priority in comparison
to P amino acids. The H-move selection is guided by the
Cartesian distance between HCC and the H amino acids in the
sequence. For the ith hydrophobic amino acid, the common
topological neighbours (TN) of the (i — 1)th and (i + 1)th
amino acids are computed. The TN of a lattice point are
the points at unit lattice-distance apart from it. The Cartesian
distance of all unoccupied common neighbours are calculated
from the HCC. Then the point with the shortest distance is
listed in the possible H-move list for ¢th hydrophobic amino
acid if its current distance from HCC is greater than that
of the selected point. When all H amino acids are traversed
and the feasible shortest distances are listed in H-move list,
the amino acid having the shortest distance in H-move list is
chosen to apply a diagonal move. A tabu list is maintained for
each hydrophobic amino acid to control the selection priority
amongst them. For each successful move, the tabu list is
updated for the respective H amino acid. For P amino acids,



the same diagonal moves are applied as H-move. However, no
hydrophobic-core-center is calculated, no Cartesian distance is
measured, and no tabu list is maintained for P-move.

Algorithm 2: SSTabu(maxIter, maxRetry, maxRW, c)

1 //H and P are hydrophobic & polar amino acids.
2 initTabulList()

3 for (i = 1 to maxlter) do

4 mv <— selectMoveForH()

5 if (mv ! = null) then

6 applyMove(mv)

7 updateTabulList(i)

8 else

9 mv «— selectMoveForP()
10 if (mv ! = null) then

11 applyMove(mv)

12 evalute(AA) //AA-amino acid array
13 if (limproved) then

14 retry++

15 else

16 improvedList «+— addTopOfList()
17 retry =0

18 rw=20

19 if retry > maxRetry then

20 randomWalk(maxPull)

21 resetTabuList()

22 rW++;

23 if rw > maxRW then

24 relayRestart(improvedList)
25 resetTabuList()

B. Stagnation Recovery

For hard optimisation problems such as protein structure
prediction, local search algorithms often face stagnation. Thus,
handling such situation intelligently is important to proceed
further. In SS-Tabu, random-walk [10] and relay-restart tech-
nique are applied on an on-demand basis to deal with stagna-
tion. The random-walk algorithm is applied to break the pre-
matured H-cores. For local search, the random-walk is found
effective [10] in stagnation recovery. Relay-restart is applied
when random-walk fails to escape from local minima. In
relay-restart, instead of using a fresh restart or restarting from
the current best solution, search restarts from an improving
solution. An improving solution list is maintained that contains
all the improving solutions after initialisation.

VI. OUR APPROACH: LOCAL SEARCH EMBEDDED GA

In this paper, we present a hybrid search algorithm that embeds
a SS-Tabu within a population based GA™. We tested the
algorithm on simplified protein structure prediction problem. In
our low-resolution ab initio method, we use HP energy model
for conformation evaluation and FCC lattice for structure
mapping. The hybrid search framework and its components
are presented below:

A. Hybrid Framework:

The hybrid framework (as shown in Algorithm 3) is the
combination of the GA™ [8] and the spiral search (SS-Tabu)
[9]. We apply SS-Tabu in two different stages within GA™ as
follows:
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Algorithm 3: LSEmbeddedGA(opR, rwT)

1 op: Operators, ¢, ¢’: Conformations

2 0pR: Operator selection probabilities

3 curP,newP: Current and new populations
4 rwT: Number of non-improving

5 generations before random walk.

6 1/

7 initPopulation(curP)

8 SSTabu(curP)

9 foreach Generation until timeout do
10 selectOperator(op, opR)

1 if mutation(op) then

12 foreach ¢ € curP do

13 newP.add(mutConf(c))

14 else /crossover (0Op)

15 while —~full(newP) do

16 ¢, ¢ + randomConfs(curP)
17 newP.add(crsConfs(c,))
18 if ~improved(newP,rwT) then

19 randomWalk(newP)

20 SSTabu(newP)

21 curP < newP
22 return bestConformation(curP)

1) At the beginning: In GA™, a randomly generated population
was the starting point of the genetic operations. In our hybrid
approach, we apply a H-core directed local search guided by
tabu meta-heuristic (Algorithm 3 line 8) to improve all the
randomly generated individuals within the population. These
improved individuals are then used as the initial population
of the hybrid GA™. In this stage the population based genetic
algorithm gain a lift at the starting.

2) At the stagnation: In most cases, after a number of gen-
erations, the individual conformations in the GA population
become similar due to the formation of pre-matured H-cores.
In this situation (called a local minimum), the search often
get stuck. In [10], a random-walk algorithm is applied to
escape the stagnation by breaking the pre-matured H-cores.
In a random-walk, both bad and good solutions are generated
by using pull moves. However, after applying long random-
walks, the quality of the individual solutions in the population
normally drops significantly. Typical GAs take long time to
regain from the dropped energy level. However, local search
algorithms can regain the energy level very quickly. Moreover,
during the application of pull moves, we observe energy level
and structural diversification of the generated structures and
maintain a balance between these two. We allow energy level
to change within 5% to 10% and the structure within 10% to
75%. We try to accept the conformation that is close to the
current conformation in terms of energy level and has possible
maximum structural diversity from the current conformation.
In this process, the H-cores of the individuals are broken and
eventually the fitness of the individuals in terms of free energy
level drops. At this point, immediately after applying random-
walk (Algorithm 3 line 20), we apply SS-Tabu to improve the
individuals in the population quickly.



B. Further Implementation Details

Like other search algorithms, our hybrid search requires initial-
isation. It also needs evaluation of the solution in each iteration.
An initial population of individual solutions are generated and
enhanced by local search before starting genetic algorithms.

Algorithm 4: initialise()

1 //AA-amino acid array of the protein

2 //SAW- Self-avoiding-walk

3 basisVec[12] +— getTwelveBasisVectors()
4 AA[0] «+— AminoAcid(0,0,0)

5 while (!SAW) do

6 for (i=1 to seqLength — 1) do

7 k +— getRandom(12)

8 basis «+— basisVeclk]

9 node <— AA[i — 1] + basis

10 if isFree(node) then

1 AA[i] +— AminoAcid(node)
12 else

13 SAW «— false

14 break

15 return AA[ |

1) Initialisation: Our algorithm starts with a feasible set of
conformation known as population. We generate an initial
conformation following a self-avoiding walk (SAW) on FCC
lattice points. The pseudocode of the algorithm is presented
in Algorithm 4. It places the first amino acid at (0,0,0). It
then randomly selects a basis vector to place the successive
amino acid at a neighbouring free lattice point. The mapping
proceeds until a self avoiding walk is found for the whole
protein sequence.

2) Evaluation: After each iteration, the conformation is eval-
uated by counting the H-H contacts (topological neighbour)
where the two amino acids are non-consecutive. The pseu-
docode in Algorithm 5 presents the algorithm of calculating
the free energy of a given conformation. Note that the energy
value is negation of the of the H-H contact count.

Algorithm 5: evaluate(AA)

1 for (i=1 to seqgLength — 1) do

2 for (k =i+ 2 to segLength — 1) do

3 if AAType[i] = AATypelk] = H then

4 nodel «+— AA][i]

5 noded <— AALK]

6 sqrD «— getSqgrDist(nodel, nodeJ)
7 if sqrD = 2 then

8 fitness «— fitness — 1

9 return fitness

VII. EXPERIMENTAL RESULTS AND ANALYSIS

In our experiment, the protein instances (as shown in Table 1),
the S, FI80, and R instances are taken from Peter Clote
laboratory website!. These instances have been used in [8],
[9], [17], [29], [30] for evaluating different algorithms. We
also use five larger sequences that are taken from the CASP?

IPeter Clote lab: bioinformatics.bc.edu/clotelab/FCCproteinStructure
2CASP9: predictioncenter.org/casp9/targetlist.cgi
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competition. The corresponding CASP target IDs for proteins
3mse, 3mr7, 3n06, 3no3, and 3on7 are T0521, T0520, TO516,
T0570, and T0563. These CASP targets are also used in [29].
To fit in the HP model, the CASP targets are converted to
HP sequences based on the hydrophobic properties of the
constituent amino acids. The lower bounds of the free energy
values (in Column LBFE of Table I) are obtained from [17],
[29]; however, there are some unknown values (presented as
n/a) of lower bounds of free energy for large sequences.

A. Data Table (Table 1)

In Table I, we present three different sets of result obtained
from i) Local Search [9] (SS-Tabu), ii) Genetic Algorithms [§]
(GA™), and iii) Hybrid Algorithms (Hybrid-GA). We compare
our reseults with [8] and [9] because these two algorithms
produce the current state-of-the-art results for the same models.
In the table, the Size column presents the number of amino
acids in the sequences, and the LBFE column shows the known
lower bounds of free energy for the corresponding protein
sequences in Column ID. However, a lower bound of free
energy for protein 3on7 is unknown. The best and average
free energy for three different algorithms are also present in
the table. The bold-faced values indicate better performance in
comparison to the other algorithms for corresponding proteins.
The experimental results show that our Hybrid-GA wins over
SS-Tabu and GA™ over the 15 proteins with a significant
margin on average search results.

B. Relative Improvement

The difficulty to improve energy level is increased as the
predicted energy level approaches to the lower bound. For
example, if the lower bound of free energy of a protein is
—100, the efforts to improve energy level from —80 to —85
is much less than that to improve energy level from —95 to
—100 though the change in energy is the same (—5). Relative
Improvement (RI) explains how close our predicted results to
the lower bound of free energy with respect to the energy
obtained from the state-of-the-art approaches.

-300
310 | .
®
Z 320 | -
3
5 SST —»—
S -330 - GA+ —— —
° HYB ——
(@]
©
& -340 i
>
<C
-350 -
-360 \ \ \ \ \ \
0 50 100 150 200 250 300

Time (Minutes)

Figure 6: Search progress for protein R1 with time. SST, GA™, and
HYB are spiral search, genetic algorithms and new hybrid algorithm.



The current state-of-the-art results
Protein Info Hybrid-GA Spiral Search [9] Genetic Algorithm [8] Time
(GAT & SS-Tabu) (SS-Tabu) (GAT)
ID Size LBFE Best Avg Best Avg RI Best Avg RI mins
S1 135 -357 -353 -349 -355 -347 20% -355 -348 11%
S2 151 -360 -355 -352 -354 -347 38% -356 -349 27% 120
S3 162 -367 -360 -355 -359 -350 29% -361 -349 33%
S4 164 -370 -363 -356 -358 -350 30% -364 -352 22%
F180_1 -378 -359 -348 -357 -340 22% -351 -341 18%
F180_2 180 -381 -365 -353 -359 -345 22% -362 -346 19% 300
F180_3 -378 -371 -359 -362 -353 25% -361 -350 32%
R1 -384 -364 -352 -359 -345 18% -355 -346 17%
R2 200 -383 -364 -355 -358 -346 23% -360 -346 23% 300
R3 -385 -366 -353 -365 -345 19% -363 -344 22%
3mse 179 -323 -293 -286 -289 -280 14% -290 -279 17%
3mr7 189 -355 -331 -320 -328 -313 17% -328 -316 10%
3no6 229 -455 -424 -406 -411 -391 23% -420 -400 12% 300
3no3 258 -494 -426 -407 -412 -393 14% -421 -402 6%
3on7 279 n/a -526 -501 -512 -485 n/a -515 -485 n/a

Table I: Experimental results of new hybrid approach, SS-Tabu, and GA™. Columns RI present the relative improvements over the state-of-
the-art approaches. The results are obtained from 50 different runs of similar setting for each protein.

_E—E,
- E, - Er
In Table I, we also present a comparison of improvements
(%) on average conformation quality (in terms of free energy
levels). We compare Hybrid-GA (target) with SS-Tabu and
GA™ (references). For each protein, the RI of the target (¢)
w.r.t. the reference (r) is calculated using the formula in
Equation 2, where E, and E, denote the average energy values
achieved by the target and the reference respectively, and Ej is
the lower bound of free energy for the protein in the HP model.
We present the relative improvements only for the proteins
having known lower bound of free energy values. We test
our new algorithm on 15 different proteins of various length.
The bold-faced values are the minimum and the maximum
improvements for the same column.

RI * 100% (@)

Improvement w.r.t. SS-Tabu: The experimental results in Table
I, at column RI under SS-Tabu shows that our Hybrid-GA is
able to improve the search quality in terms of minimising the
free energy level over all the 15 proteins considered for the
test. The relative improvements with respect to SS-Tabu range
from 14% to 38%.

Improvement w.r.t. GAT: The experimental results in Table
I, at column RI (relative improvement) under GA™ shows
that our Hybrid-GA is able to improve the search quality in
terms of minimising the free energy level over all 15 proteins
considered for the test. The relative improvements with respect
to GA™ range from 6% to 33%.

C. Search progress

We compare the search progresses of different approaches; SS-
Tabu, GA™, and Hybrid-GA over time. Figure 6 shows the
average energy values obtained with times by the algorithms
for protein R1 over 50 different runs. We observe that all of the
algorithms achieve very good progress initially, but with time
increasing, our Hybrid-GA makes more progress than SS-Tabu
and GA™. Notice that the Hybrid-GA curve does not coincide
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with the SS-Tabu curve although the former uses the latter
to initialise its population. This is because SS-Tabu continues
the search only with one solution all the time while Hybrid-
GA runs SS-Tabu on each individual (30 in number) in the
population for a short time (2 minutes). This is similar to 30
fresh restarts in first 60 minutes and we take the best result
obtained so far at each time point. The Hybrid-GA curve is
thus different.

D. Simplified structure

In Figure 7, we show the best structures found by Hybrid-
GA, SS-Tabu and GA™ for protein R1. Each algorithm is run
over a period of 5 hours to achieve the results. However, the
structure in Figure 7-d is collected from the literature [17],
[29]. To view structures, we use Jmol’: an open-source Java
viewer for chemical structures in 3D.

c) by Hybrid, E=-364
Figure 7: 3D structures of protein R1 obtained by different ap-
proaches.

d) LBFE, E=-385

3Jmol website: www.jmol.org



VIII. CONCLUSION

In this paper, we presented a hybrid genetic algorithm that
integrated a tabu-based hydrophobic-core directed local search
within a genetic algorithm framework. In our low-resolution
ab initio method, we use hydrophobic-polar energy model
and face-centred-cubic lattice for protein structure prediction.
We apply local search (i) once at the beginning: to build
a rich initial population for genetic algorithm and (ii) later
every time at stagnation: to improve the diversified individuals
after applying random-walk. We experimentally show that our
hybrid approach outperforms the state-of-the-art approaches.
In future, we intend to apply our hybrid algorithm in high
resolution protein structure prediction.
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