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ABSTRACT

Protein structure prediction is a challenging optimisation
problem to the computer scientists. A large number of ex-
isting (meta-)heuristic search algorithms attempt to solve
the problem by exploring possible structures and finding
the one with minimum free energy. However, these algo-
rithms often get stuck in local minima and thus perform
poorly on large sized proteins. In this paper, we present
a random-walk based stagnation recovery approach. We
tested our approach on tabu-based local search as well as
population based genetic algorithms. The experimental re-
sults show that, random-walk is very effective for escaping
from local minima for protein structure prediction on face-
centred-cubic lattice and hydrophobic-polar energy model.
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1. INTRODUCTION

Proteins are essentially sequences of amino acids. They
adopt specific folded three-dimensional structures to per-
form specific tasks. The function of a given protein is deter-
mined by its native structure, which has the lowest possi-
ble free energy level. Nevertheless, misfolded proteins cause
many critical diseases such as Alzheimer’s disease, Parkin-
son’s disease, and Cancer [1, 6]. Protein structures are im-
portant in drug design and biotechnology.

Protein structure prediction (PSP) is computationally a
very hard problem [11]. Given a protein’s amino acid se-
quence, the problem is to find a three dimensional structure
of the protein such that the total interaction energy amongst
the amino acids in the sequence is minimised.

A large number of existing (meta-)heuristic search algo-
rithms attempt to solve the problem by exploring possible
structures and finding the one with minimum free energy
but they suffer from stagnancy for larger proteins. Stagna-
tion is the situation when the search algorithms get stuck
or stall in local minima: trap in a valley or loss way out in
plateaus. Therefore, finding an effective stagnation recovery
technique is essential for further progress in conformational
search.

Search-based optimisation algorithms for PSP deal stag-
nation in different ways. In local search (LS), random restart
is widely used in stagnation recovery. In population based
algorithms, such as genetic algorithms (GA), the similar-
ity within the population increases with progressive genera-
tions. In GA, typically, the individuals that are very similar
are removed from the current population and the vacancies
are filled up with randomly generated solutions in a stall
situation.

In this paper, we present a random-walk (RW) based stag-
nation recovery technique. A random-walk is a process of
exploring feasible solutions from a base solution with mini-
mal changes to it. We tested our technique with tabu guided
local search as well as population based genetic algorithms
for PSP on FCC lattice and HP energy model. Finally, we
show the effectiveness of random-walk in search optimisation
for simplified PSP experimentally.
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2. BACKGROUND

Homology modeling, protein threading and ab initio are
three computational approaches used in protein structure
prediction. Prediction quality of homology modeling and
protein threading depends on the sequential similarity of
previously known protein structures. However, our work
is based on the ab initio approach that only depends on the
amino acid sequence of the target protein. Levinthal’s para-
dox [10] and Anfensen’s hypothesis [2] are the basis of ab ini-
tio method for PSP. The idea was originated in 1970 when
it was demonstrated that all information needed to fold a
protein resides in its amino acid sequence. In our simplified
protein structure prediction model, we use 3D FCC lattice
for conformation mapping, HP energy model for conforma-
tion evaluation. We use LS and GA as search optimisation
algorithms.

LS: Starting from an initial solution, local search algo-
rithms move from one solution to another to find a better
solution. Local search algorithms are well known for effi-
ciently producing high quality solutions, which are difficult
for systematic search approaches. However, they are incom-
plete [3], and suffer from revisitation and stagnation.

GA: A genetic algorithm maintains a set of solutions
known as population. In each generation, it generates a
new population from the current population using a given
set of genetic operators known as crossover and mutation.
It then replaces inferior solutions by superior newly gener-
ated solutions to get a better current population.

3D FCC Lattice: The FCC lattice has the highest pack-
ing density compared to the other existing lattices [7]. In
FCC (Figure la), each lattice point has 12 neighbours with
12 basis vectors: (1,1,0), (—1,-1,0), (-1,1,0), (1,1,0),
(07 L, 1)’ (07 17 _1)7 (17 17 0)7 (17 07 _1)7 (07 _17 1)7 (_1’ 0, 1)7
(0,—1,—1), and (—1,0, —1).
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(a) 3D FCC lattice (b) HP energy model [5]

Figure 1: a) 3D FCC lattice and b) HP energy model.

HP Energy Model: In the HP model [5], when two non-
consecutive hydrophobic amino acids become topologically
neighbours, they release a certain amount of energy, which
for simplicity is shown as —1 in Figure 1b. The total free en-
ergy (F) of a conformation based on the HP model becomes
the sum of the contributions of all pairs of non-consecutive
hydrophobic amino acids as shown in Equation 1.

FE = Z Cij.€ij (1)
i<j—1
Here, ¢;; = 1 if amino acids ¢ and j are non-consecutive
neighbours on the lattice, otherwise 0; and e;; = —1 if ith
and 7" amino acids are hydrophobic, otherwise 0.
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3. RELATED WORK

In LS, restart from current best solution by resetting all
parameters and tabu-list was used in [4] to escape from local
minima. However, in GA, a twin-removal operator [8] was
used to remove duplicates from the population to recover
the search from stalling.

4. OUR APPROACH

In search stagnation, we apply a random-walk algorithm
to change the current solution. We refer random-walk as a
process of exploring feasible solutions from a base solution
with minimal changes to it. In random-walk, both bad and
good solutions are traversed by making minimal changes to
the current solution.

Figure 2: The pull move operator used random-walk;
for easy comprehension, presented in 2D space.

Local minima in PSP are encountered when premature
hydrophobic-core (H-core) is formed. To break the prema-
ture H-core we apply a random-walk algorithm (the pseu-
docode in Algorithm 1). This algorithm uses pull moves [9]
(as shown in Figure 2). We use pull-moves because they are
complete, local, and reversible. Successful pull moves never
generate infeasible conformations. During pulling, energy
level and structural diversification are observed to maintain
balance among these two. We allow energy level to change
within 5% to 10% that changes the structure from 10% to
75% of the original. We try to accept the conformation
that is close to the current conformation in terms of energy
level, and has possible maximum structural diversity from
the current conformation.

Algorithm 1: randomWalk()

1 isFound <— false
2 while (lisFound) do

3 for (pos=1 to seqLength) do
4 ‘ applyPullMove(pos)

5 end

6 isFound <— checkDiversity()
7 end

We evaluate and compare current solution with the so-far
global-best solution at the end of each iteration (generation
in GA). For LS, when the number of non-improving itera-
tion is reached to the maxtry-threshold that was set initially,
the random-walk algorithm is applied. Instead of iteration,
non-improving generation count is used in GA to apply the
random-walk algorithm.

S. EXPERIMENTAL RESULTS

In our experiment, we use the protein sequences (as shown
in Table 1 and 2) available from Peter Clote laboratory web-
site’. Cebrian et al. [4] used these instances to test their al-
gorithm. We present two sets of results: Table 1 presents the

1
Peter Clote Lab: http://bioinformatics.bc.edu/clotelab/FCCproteinStructure/

621



effectiveness of random-walk in LS and Table 2 in GA. The
column LB-FE presents the lower bound of free energy and
= in column Best for both the tables implies that the lower
bound of the free energy is obtained (i.e., Best=LB-FE). The
results are calculated over 50 different runs (2 hours/run)
for both LS and GA.

Local Search

Protein Info Without RW ‘With RW
) )
Seq | Size | LB-E | Best Avg | Best Avg RI
F1 -168 -162 -157 = -167 91%
F2 -168 -159 -157 -167 -164 65%
F3 91 -167 -161 -156 = -165 81%
F4 -168 -162 -158 = -165 7%
F5 -167 -161 -158 = -165 76%
S1 135 -357 -340 -330 -355 -347 62%
S2 151 -360 -337 -330 -354 -347 57%
S3 162 -367 -346 -328 | -359 -350 | 57%
S4 164 -370 -339 -321 -358 -350 | 59%

Table 1: Random-walk with local search.

Genetic Algorithms
‘Without RW ‘With RW

(9] (t)

Protein Info

Seq | Size | LB-E | Best Avg | Best Avg RI
F1 -168 -165 -159 = -166 | 78%
F2 -168 -164  -159 = -165 | 67%
F3 91 -167 -163 -158 = -164 | 67%
F4 -168 -165 -160 = -165 | 63%
F5 -167 -166 -160 = -166 | 86%
S1 135 -357 -344  -336 | -8355 -348 | 57%
S2 151 -360 -346 -335 | -356 -349 | 56%
S3 162 -367 -347  -334 | -361 -349 | 45%
S4 164 -370 -350 -333 | -8364 -352 | 51%

Table 2: Random-walk with genetic algorithms.

5.1 Analysis

In Tables 1 and 2, we present relative improvements (RI)
on average conformation quality. We compare results be-
tween target (with random-walk) and reference (without
random-walk) for both LS and GA. For each protein, the
RI of the target (t) w.r.t. the reference (r) is calculated us-
ing the formula in Equation 2, where E; and E, denote the
average energy values achieved by the target and the refer-
ence respectively, and Fj; is the lower bound of free energy
for the protein in HP model.

E, - E,
E, —E,
The results show that the minimum and maximum RI of us-

ing random-walk in LS are 57% and 91% respectively. These
values are 45% and 86% for GA.

RI = * 100% (2)

LS: Without RW ——
LS: WithRW =~ —+—

Average Energy (-ve)

360 I I I I I
0 20 40 60 80 100 120

Time (Minutes)

Figure 3: Search progress for protein sequence S4
w.r.t. time between two variants of LS.

ACM-BCB 2012

5.2 Search Progress

We compare the average search progresses between two
variants of LS (Figure 3), and two variants of GA (Figure 4)
over time (2 hours) for protein sequence S4. We observe that
all of the algorithms achieve very good progress initially, but
with increasing time, algorithms using random-walk make
more progress than others.

-300

-310 1

-320 — =
GA: Without RW —<—

-330 Wit b

-340

Average Energy (-ve)

-350
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Figure 4: Search progress for protein sequence S4
w.r.t. time between two variants of GA.

6. CONCLUSION AND FUTURE WORK

In this paper, we present a random-walk-based stagna-
tion recovery technique. We experimentally show that for
both tabu-based single point local search and population
based genetic algorithms, random-walk is very effective in
escaping stagnation for conformation search. We aim to ap-
ply random-walk with different algorithms in high resolution
PSP in future.
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