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Abstract—This paper presents the impact of twins and the measures for their removal from the population of genetic algorithm (GA)

when applied to effective conformational searching. It is conclusively shown that a twin removal strategy for a GA provides

considerably enhanced performance when investigating solutions to complex ab initio protein structure prediction (PSP) problems in

low-resolution model. Without twin removal, GA crossover and mutation operations can become ineffectual as generations lose their

ability to produce significant differences, which can lead to the solution stalling. The paper relaxes the definition of chromosomal twins

in the removal strategy to not only encompass identical, but also highly correlated chromosomes within the GA population, with

empirical results consistently exhibiting significant improvements solving PSP problems.

Index Terms—Genetic algorithms, twin removal, protein structure prediction, search algorithms, chromosome.
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1 INTRODUCTION

THE ab initio protein structure prediction (PSP) problem
[1] essentially involves investigating the folding rela-

tionship of a linear chain of amino acids into a three-
dimensional (3D) structure based on the properties and
appearance pattern of amino acids. The folding relationship
can be extremely complex [2], [3], [4], [5], [6], [7], [8], [9],
[10], and to unravel this convoluted relation, lattice models
such as the hydrophobic-hydrophilic (HP) model [11] have
been widely applied. In the HP model, the copolymer
chains of H (hydrophobic) and P (polar or hydrophilic)
monomers are configured as self-avoiding-walks (SAW)
favoring H-H interaction in a 2D square or a 3D cube
lattice or a face-centered-cube (FCC) arrangement [12]. These
simple or low-resolution models allow the development,
testing, and comparison of various search algorithms that
we have studied in this paper. The low-resolution model is
applied within a hierarchical approach [13], [14], [15], [16],
[17] to locate potential (backbone) conformation of the
folded protein quickly and reliably [18] within the complex
and convoluted search landscape before being explored
further by a more realistic model. The approach is
especially suitable for the computationally expensive ab
initio prediction. The rationale behind the low-resolution
model [3], [11], [19], [20], [21], [22], [23], [24], [25] and its
current applications are widely available elsewhere [16],
[26], [27], [28], [29], [30], [31].

For a structural search algorithm, the Genetic Algorithm
(GA) is promising because of GA’s crossover and mutation
operation. Crossover being the heart of GA has also been
adapted in many other nondeterministic search approaches
[32], [33], [34]. Though effective [32], [33], [34], [35], [36],
[37], [38], GA search can stall (i.e., stop searching) [39],
especially for long sequences [37], and like other available
algorithms, fails to solve PSP-like hard problems.

We investigate the aforementioned limitation by focus-
ing on the growth of twins or identical chromosomes within
the GA population leading to stalling and we revisit the
concept of identical chromosomes. Moreover, we relax the
concept by defining a new chromosome correlation factor
(CCF) to include similar (strongly correlated) chromosomes
to maintain an optimum percentage of diversity, which is
confirmed empirically using benchmark PSP sequences
[40], [41] along with other biological sequences. Randomly
selected single-point, instead of multipoint crossover and
mutation are used [36], [37], [38] to avoid exacerbated
collision or nonself-avoiding-walks [33], [42].

The remainder of the paper is structured as follows:
Section 2 defines the HP model, while Section 3 provides
the reasoning for preferring GAs for solving PSP problems.
Section 4 describes the appearance of twins in GAs, existing
remedies and limitations, and then broadly redefined twins.
After Section 5 on experiments and results, Section 6
discusses the impact of twin removal. Section 7 compares
the best twin removal approach with other state-of-the-art
PSP search approaches. Section 8 highlights the effect of
twin removal combined with sophisticated GAs. Section 9
provides conclusions. A list of acronyms used throughout
the paper is provided in the Appendix.

2 THE HP MODEL

The HP lattice model is based on the premise that the effect of
hydrophobic (H) interaction dominates protein folding with
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the energy of a conformation being defined by the number of
topological neighboring contacts (TNs) between immedi-
ately nonsequential Hs. For an amino acid sequence, s ¼
s1; s2; s3; . . . ; sN of length N , the PSP formally involves
finding the conformation g, where g� 2 GðsÞ and energy
E� ¼ EðGÞ ¼ minfEðgÞ j g 2 Gg. G(s) is the set of all valid
SAW conformations of s [35]. If the number of TNs in a
conformation g is q, then the value ofE(g) is defined asEðgÞ ¼
�"q and the optimum fitness is given by F ¼ minðEðgÞÞ,
whereF is regarded as the fitness of the conformation and the
value of " is usually assigned 1 [43] (a practice we follow in
this paper). For chromosome presentation in the 2D HP
model [44], three possible moves exist: (anticlockwise) Left
(L), (clockwise) Right (R), and Forward (F), which are encoded
as 0, 1, and 2, respectively (see Fig. 1).

3 SEARCH ALGORITHMS FOR PROTEIN STRUCTURE

PREDICTION

While solving PSP problems, using this simplified model
on short sequences [45], [46], [47], [48] can, however, lead to
an inordinately large number of conformations having
admissible SAW [45]. For instance, for a sequence of
N amino acids, the number of feasible SAW conformations
is directly proportional to �N [48], where the connective
constant � (also referred to as the effective coordinate
number) is lattice dependent [46]. The search for the best
solution, therefore, becomes a major challenge, and the use
of exhaustive search becomes quite infeasible [45], [46],
[47], [48]. Further, the prediction problem has been proved
to be NP-complete [49], [50] implying that a polynomial-
time algorithm is not feasible either. Statistical approaches
to the PSP problem include Contact Interaction [51] and
Chain Growth [52]. Both these techniques are characterized
by exhibiting lower accuracy as the sequence length
increases and also by being nonreversible in their move
steps while searching for optimum conformation. Alter-
native PSP strategies include Artificial Neural Networks
(ANNs) [53], Support Vector Machines (SVMs) [54], and
Bayesian Networks (BNs) [55], while Hidden Markov Models
(HMMs) which are based on Bayesian learning, have also
been used to convert multiple sequence alignment into
position-specific scoring matrices (PSSMs), which are subse-
quently applied to predict protein structures [56], [57].
These approaches are often dependent on the training set,
and thus, mostly applicable to the homology modeling and
threading-based approaches rather than ab initio PSP

problems. In particular, if the training sets are unrelated
to the test sets, then information relating to a particular
motif does not assist in a different motif.

For deterministic approaches to the PSP problem,
approximation algorithms [58], [59], [60] provide an insight,
though they are not particularly useful in identifying
minimum energy conformations [40], and while linear
programming (LP) methods have been used for protein
threading [61], [62], [63], they have not been applied in ab
initio applications, with the recent LP focus being confined
to approximating the upper bound of the fitness value
based on sequence patterns only [64].

Therefore, nondeterministic search techniques have
dominated attempts to solve the PSP problem of which
there are a plethora including Monte Carlo (MC) simulation,
Evolutionary MC (EMC) [32], [33], Simulated Annealing (SA),
Tabu Search with Genetic Algorithms (GTBs) [34], Ant Colony
Optimization [35], Immune Algorithm (IA) based on Artificial
Immune System (AIS) [27], Conformational Space Annealing
(CSA) [114], and so on. Due to their simplicity and search
effectiveness, Genetic Algorithms [36], [37], [38], [42], [43],
[65], [66] are very attractive [37], [38] especially for the
crossover operation, which can build new conformation by
exchanging subconformations.

While GA performance can be very effective, it still does
not ensure that the final generation contains an optimal
solution since it can stall at any point [39], a phenomenon that
becomes more prevalent as the sequence length increases
[43]. As the GA search proceeds, growing similarity in the
population leads to the growth of twins or identical
chromosomes [67], which has been considered to contribute
to stalling. Therefore, similarity growth is assumed to have
particular significance in the PSP problem as GAs need
relatively large number of iterations to converge compared to
other less complex problems. So it is, therefore, necessary to
gain an understanding of this condition to develop a more
accurate and efficient method of PSP solution. A first stage is
to revisit the idea of twins or identical chromosomes in the
population, before relaxing the concept to embrace similar
(highly correlated) chromosomes.

4 TWINS IN GA POPULATION

The working principle of GAs supports the hypothesis that
similarity would grow within the population [67], [68], [69],
[70], [71], [72], [73], [74]. With an initial random population,
earlier generations cover a large search space in the fitness
landscape and then the search moves stochastically,
converging to a smaller search space. This implies a lower
level of variation among the population. As a consequence,
explicitly defined GA operations such as the crossover
operation become implicitly controlled as the similarity in
the population increases. This means that although we can
set the crossover rate to a desired value, in many cases, the
operation generates no variation due to the similarity, thus
effectively lowering the overall rate. Thus, it was observed
earlier that GA performs unreliably in finding the optimum
solution, specially for hard optimization problems, as the
GA search becomes stagnant [75], leading to stalling.

For a hard optimization problem such as PSP, the stalling
of GA can have a detrimental effect. The search can
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Fig. 1. The conformation of the sequence phhpphhpphh in a 2D HP
model is shown by the solid line. Dotted lines indicate TN.
Fitness ¼ �ðTN CountÞ ¼ �4. The “1” and “11” in the figure indicate
the starting and ending residue in the sequence. Three different arrows
indicating (anticlockwise) Left (0), (clockwise) Right (1), and Forward (2)
move can be used for chromosome encoding. The given conformation
can be encoded 001122110.
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frequently be trapped in local minima, unable to explore the
vast search space [39], [76]. If the landscape is less complex,
then the negative impact of the presence of twins may
remain insignificant [68]. However, if the landscape is
relatively more complex, as it is in an ab initio-based PSP
problem [3], [4], [5], [6], [7], [8], [9], [10], [77], it takes more
time to converge because of twin growth, which is an
inherent property of GAs. On the other hand, increasing
randomness within GA to maintain diversity can help GA
to surf around a vast and convoluted landscape. However,
this is also not a promising approach because it would not
allow getting the optimum solution within a feasible
timescale [68]. Thus, GAs need to be operated somewhere
in between the two extremes: 1) excessive twins or
similarity within the population leading to stalling and
2) less similarity (i.e., increased randomness) within the
population can lead to extremely slow convergence,
especially for the hard optimization problem such as PSP.
Concerns of search effectiveness pose questions of whether
to accept increasing similarity or to take steps to remove
similarity within the population. In this paper, we attempt
to find the optimal similarity within the population to avoid
these pitfalls.

4.1 Existing Remedies for the Problem of Twins

The existence of twins and attempts for their removal in GA
are not new ideas. Haupt and Haupt proposed avoiding
twin growth by starting each chromosome with different
patterns while initializing the population [71]. However, if
the twin growth is inherent in a GA search, then the effect of
initialization using different patterns would quickly decline
after initialization. Further, it has been advocated that tests
need to be continually applied with the population to
ensure that identical chromosomes do not breed [69], [78]. If
the similarities among chromosomes are reduced, then a
GA may not converge. The high dissimilarity within the
population would lead to searching too random, whereas if
the twins are allowed to grow more, then finding a
nonsimilar chromosome to mate with will be difficult
because of the inevitable occurrence of many twins, and it
will rather be a costly exercise of finding dissimilar
chromosomes. A resemblance of this is the creation of two
distinct chromosome groupings within the population: a
large collection of highly correlated chromosomes and a
much smaller set of dissimilar ones, with mating restricted
exclusively to members of the respective groups, thus,
producing different offspring. However, the problem is that
these will soon become more similar as they inherit the
communal features from each group, the equivalent of two
dissimilar parents breeding an entire next generation.

Contrary to these approaches, Deb and Goldberg sug-
gested [75] a totally opposite solution, advocating indivi-
duals be allowed to reproduce if they are very closely similar.
In [44], we have shown that crossover between phenotypi-
cally identical chromosomes is a mutation operation that can
indirectly introduce more randomness in the search. Poloni
and Pediroda [79] proposed an alternative approach of local
Pareto selection to maintain diversity. This approach consists
of placing the population on a toroidal grid and choosing the
members by means of a random walk in the neighborhoods
of the given grid points. In fact, randomness in GA can

provide a temporary remedy to the stalling condition, but
requires infeasibly long time to converge for complex
problems like PSP. Alternatively, for preserving diversity
in the population, the crowding operator [80] applied earlier
by DeJong may be used. In crowding, a newly formed
offspring replaces the existing individual most similar to
itself. Once again, the optimal degree of similarity for PSP
problem is not known. Another technique to maintain
diversity is to impose a niched-penalty [81]. In this case, any
group of individuals of sufficient similarity will have a
penalty imposed to discourage their participation in the next
generation. However, the percentage of similarity to treat as
a group in this case is not well specified.

Therefore, we focus on the need for maintaining optimal
twin level by twin removal, which was originally high-
lighted in [67] to emphasize that duplicate chromosomes or
twins reduce diversity and ultimately lead to poorer
performance. The study was, however, confined solely to
the detection and removal of identical chromosomes only,
which we would like to extend by grading the level of
similarity to be able to specify the best level for solving a
particular problem.

In solving the PSP problem using GA, to mitigate the
limitations caused by stalling, many methods such as
special operators [40], [51], statistical approaches [34], [51],
[52], and special treatment techniques such as cooling [36],
[37], [38], constraints and hybridization [32], [42], [65], [66],
[82] have been attempted. Instead, a generic approach
maintaining optimal similarity or optimal diversity for the
PSP problem is needed. We seek a generic enhancement
that can be combined with other nongeneric approaches for
further improvement.

4.2 Redefining Twins

The problem of stalling due to increasing similarity in a
population suggests that the degree of similarity between
chromosomes should be investigated. We review the notion
of twins and then broaden it to include not only identical
but also similar (highly correlated) chromosomes in the
population. We define a CCF that defines the degree of
similarity existing between chromosomes. CCF can take a
value from 0 to 1 indicating similarity of chromosome from
0 percent (CCF ¼ 0) to 100 percent (CCF ¼ 1). Hence, a
value of CCF ¼ 0:8 implies that the similarity is 80 percent
between two chromosomes. For similarity measurement
between two individuals in the genotype, we measure
similarity by counting the number of bits or characters used
for presenting a chromosome that are identical in the two
individual chromosomes as followed in [83]. For presenting
the chromosome in the 2D HP (the 2D HP model is used in
this paper) for the PSP problem [44], a 3-level code (0, 1, and
2) is used for presenting the moves’ directions: Left, Right,
and Forward (see Fig. 1).

5 SIMULATION AND EXPERIMENTAL RESULTS

The PSP problem in the lattice model with long sequences
generally has complex energy landscapes [3], [4], [5], [6], [7],
[8], [77], and hence, those sequences will take longer to
converge. Simulations were undertaken using a simple GA
on a selection of PSP benchmark sequences [40], [41] shown
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in Table 1 for the 2D square HP lattice model [11], with

particular emphasis toward longer protein sequences,

length ranging from 50 to 100. As highlighted earlier, these

longer sequences demonstrate a greater propensity toward

twin formation, so the impact on convergence for them can

be expected to be more severe. We attempt to determine the

optimum value of CCF for solving the PSP problem.
The default GA parameters [71], [84] for all experiments

were set as population size (Popz) of 200, crossover rate (pc)

of 0.8 or 80 percent, mutation rate (pm) of 5 percent, and for

the elitism, the elite rate was set to 5 percent. We allowed a

maximum of 6,000 generations per PSP sequences per run.
A group of simulations were carried out with twin

removal being omitted from one run and twins being

removed in other runs for a range of CCF settings from

r ¼ 1:0 (identical chromosomes only) to r ¼ 0:2 (the loosest

chromosome similarity tested), i.e., 0:2 � CCF � 1:0, in

steps of 0.1.
In implementing twin removal, when comparing any

two chromosomes, a knockout system was adopted based

on the superior fitness value in a correlated twin removal

(CTR) algorithm (Fig. 2), where the chromosome with the

lower fitness was removed rather than selecting chromo-

somes arbitrarily for removal. CTR uses the minimum

admissible correlation value r when comparing chromo-

some pairs for conformational similarity (Line 4), and if a

twin is identified, the one with the lower fitness is removed

(Lines 5-7). Following twin removal from a population, the

gap is filled by randomly generated chromosomes, which,

for simplicity, are not cross-checked for further twins.
To clarify the notation used in describing the results,

simulation runs that include twins are referred as WT, and

are the same as the GA-based approach by Unger and

Moult [37] but without cooling. Those runs with twin

removal implemented for all chromosomes with CCF � r
are denoted by TR-r, so TR-60 refers to the removal of all

chromosome twins having an admissible similarity value of

0.6 (60 percent) or greater. Thus, TR-100 refers to removal of

chromosomal twins that are identical, the only case

considered by Ronald in his version of twins removal [67].
Table 2 shows the fitness results for a typical sequence of

length 50 from Table 1, which was allowed to run to

6,000 generations per iteration, with the number in brackets

being the actual generation number when the optimum

fitness value of �21 was reached. If during a run the

optimal value was not reached, the minimum value

achieved is shown. In the five separate runs (Table 2),

WT never reached the optimum fitness value and stalled

mostly before reaching the 250th generation, though the

simulation ran for the entire 6,000 generations. We consider

this WT run as a direct consequence of twins with a higher

fitness appearing in the population, thereby slowing the

convergence toward an optimum solution over time as the

population becomes less diverse.
Fig. 3 shows the Generation versus Overall similarity plot.

For the WT run, the overall similarity reached �80% very

rapidly (around the 50th generation) from an initial value of

�35%, before stabilizing at �90% similarity after the

150th generation. This clearly supports the idea that

without any twin removal policy, the overall population

quickly becomes highly correlated and diversity is lost. In

such a satiation, with crossover mostly among similar

chromosomes, the offspring remain closely similar to their
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TABLE 1
Benchmark Protein Sequences for 2D HP Model

‘H’ and ‘P’ in the sequence indicate hydrophobic and hydrophilic amino
acid, respectively.

Fig. 2. Correlated twin removal algorithm.

TABLE 2
Results of Five Iterations of Sequence Length 50

Data format: Minimum fitness value (Generation number). Bold entries
indicate achieved best values. Maximum generation ¼ 6; 000 and
minimum (optimum) fitness ¼ �21. The number within brackets
indicates the actual generation number when the optimum fitness value
�21 was reached; otherwise when the numbers within brackets are not
shown; it implies the achieved minimum fitness value till 6,000
generations irrespective of whenever it is achieved.
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parents regardless of the crossover position. Thus, the
search through the population becomes stalled.

Eventually, the overall dissimilarity, or diversity, in the
chromosomes settled around 10 percent, which proved
insufficient to maintain a search capability, and so it became
trapped. It must be emphasized that with such a large
number of generations, the effect of mutation is negligible
even if elitism (i.e., preserving a small proportion (5 to
10 percent) of elite chromosomes through the generations)
is applied, as also selection fallacies allow less or no
contribution. Mutation becomes ineffectual once similarity
grows, as demonstrated by the WT runs quickly becoming
saturated. Additionally, this mutated chromosome has then
to survive (which is unlikely) to subsequently meet with a
dissimilar chromosome to produce a fitter chromosome
(again, highly improbable) so that the combined probability
of these occurrences will tend to be zero.

The TR-100 simulation removes only identical chromo-
somes so, as Fig. 3 shows, it is closely similar to the WT run.
Its average replacement percentage is �17% per generation,
meaning similarity has grown significantly within the
remaining �83% of the population. Such a high similarity
level will inevitably incur an asymptotically long run to
ensure convergence to the optimal fitness, which is
especially problematic for longer PSP sequences since it
implies that the convergence time will become infeasible.

Table 3 shows the average removal (replacement)
percentage of chromosome per generation for various
sequence lengths. It can be seen that as the sequence length
increases from 50 to 100, the corresponding replacement

percentages reduce slowly, so the population of TR-100, for
instance, becomes less diverse as the sequence lengthens.
Conversely, the replacement probabilities for TR-20, TR-30,
and TR-40 are very high, which is to be expected given that
they are replenishing almost the entire population with
random conformations. This leads to a less correlated
search, with the corollary that convergence to the optimum
failed, as corroborated in Table 2 that presented results for
the TR-20 to TR-50.

It is also clear that TR-80 and TR-70 display the best
removal performance for correlated twins, as the population
maintains the most favorable balance between the overall
similarity (chromosome correlation), keeping the search
correlated to aid convergence, and maintaining diversity
by supporting the growth of dissimilar but competent
chromosomes. Overall, TR-80 provided the best perfor-
mance by maintaining an optimal level of replacements.

Finally, to investigate the effectiveness of the twin
removal approach, five other PSP sequences of different
lengths (see Table 1) were also tested, and the “generation
versus overall similarity graphs” for all of the other
sequences were found to be fully consistent with the plots
in Fig. 3. In all cases, the results were similar to those
presented for sequence length 50 from which we conclude
that a twin removal strategy based upon a CCF value �0:8
(80 percent) consistently provides the best (optimal) setting.
As the landscape of PSP problems has too many local
minima, a little more randomness helps, whereas for
relatively less complex landscapes, less randomness (i.e.,
higher correlation) would do better.

5.1 Additional Biological Sequences

To verify the consistency of the previous result, we have
selected actual protein sequences of various lengths from
the Protein Data Bank (PDB) [85] and then converted the
amino acid sequences into HP sequences to make them
workable with our algorithm. The results shown in Table 4
are entirely consistent with the results previously shown.

5.2 Variations in GA Parameter

To justify the preferred settings of the GA parameters, we
took a representative set of TR-80, TR-100, and WT, and
varied the GA parameters for population size (Popz) 100,
200, and 300, crossover rates (Pc) 0.8, 0.4, and 0.1, and
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TABLE 3
Percentage of Average Chromosome Removal for
Various PSP Sequences, Lengths from 50 to 100

TABLE 4
Average Minimum Fitness Values Achieved for PDB Sequences

Source: PDB sequences [85]. Bold entries indicate best values
achieved. Here, simulation results of 5 iterations of PDB (HP converted)
sequences of different lengths. In every case a maximum of 6,000 gen-
erations was allowed.

Fig. 3. Generation versus overall similarity (percent) plot for seq. of
length 50.
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mutation rate (Pm) 0.80, 0.40, and 0.05. For the various
parameter settings, twin removal for similarity �80% (i.e.,
TR-80) was found to be the most effective (see Table 5) with
Popz ¼ 200, Pc ¼ 0:8, and Pm ¼ 0:05.

6 DISCUSSION: IMPACT OF TWIN REMOVAL AND

PREFERRED CCF

In Section 4, we introduced the concept of removal from
the population of twins of different level of similarity. In the
experiments reported in the preceding section, we have
empirically demonstrated that this concept can provide an
effective GA that is less likely to stall. We propose that the
modified twin removal is an effective approach because
without twin removal, the inexorable growth of identical and
also progressively more highly correlated twins can lead to
premature convergence or stalling in the search process [39],
[86]. This situation is exacerbated by the crossover creating
more twins and the impact of mutation becoming increas-
ingly ineffectual. We will now consider these issues in the
context of the twin removal.

6.1 Premature Convergence or Stalling

Stalling or premature convergence in the WT runs shows
that nearly all offspring generated throughout the popula-
tion are likely to be similar and will go forward to the next
generation, with the result that there will be almost no
variation in subsequent generations. With ineffectual cross-
over due to the presence of a large number of highly similar
members of population, it can be surmised that the strategies
to facilitate efficient removal of both identical and highly
correlated twins will improve the GA performance, a
premise that is fully corroborated in the experimental results
given in previous section for the non-WT runs.

6.2 Ineffective Mutation

The growth of correlated twins inevitably weakens the
impact of mutation despite its introduction of random
variations. Therefore, different variant component or sub-
conformations within a conformation will quickly disappear
in the many highly correlated chromosomes in the popula-
tion. Thus, when the number of highly correlated chromo-
some count (wk) becomes very close to the population size

(Popz), the chromosomes selected for mutation ðCmutatedÞ are
likely to be similar (high CCF value) to the majority of the
population. Thus, when the mutational change is insignif-
icant relative to the (previous or parental) conformation,
Cmutated will remain similar to the majority of chromosomes
ðCkÞ, i.e., mutation will have very little impact. However, if
the conformational change differs heavily with respect to Ck,
then the following two scenarios arise:

1. After mutation, Cmutated has a lower fitness (fmutated)
than average, so it is less likely to be selected, and
thus, it will not be in the next generation.

2. After mutation, Cmutated has a higher fitness than
average, but is not similar to the more populous
chromosomes, and so while fmutated > fk, as
wk ! Popz, the effect within the proportional selec-
tion procedure (such as roulette wheel, Fig. 4)
becomes fmutated � wkfk. Thus, the fitter chromo-
some can be lost away [69], [87] by relying on the
fallaciously weighted selection procedure. For in-
stance, to notice the “fallaciously weighted selec-
tion,” consider Fig. 4, where pie chart is assumed as
a chart of a population of seven chromosomes
having differing fitness as in Fig. 4a, i.e., 7, 6, 5, 4,
3, 2, 1, and in Fig. 4b, i.e., 7, 5, 5, 5, 5, 2, 1. Fig. 4a is
the scenario usually assumed in the literature [39],
[69], [70], [86], whereas in our findings in Fig. 4b, it is
shown that fitness 5 occupies 68 percent in total, so
the probability of a rolling marble (on the assumed
roulette wheel (selection procedure)) randomly
selecting a pie slot having fitness 5 can be expressed
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Fig. 4. Pie chart of a population of seven chromosomes having differing
fitness factors. (a) 7, 6, 5, 4, 3, 2, 1 and (b) 7, 5, 5, 5, 5, 2, 1. Each
individual fitness is indicated by a separate slot in the pie. LLegend:
Fitness, fitness percent (with respect to the sum of the fitness values).

TABLE 5
Variations of the GA Parameters for Twin Removal

Each entry indicates average jfitnessj value achieved from 5 iterations and each of the iterations ran up to 6,000 generations. Five benchmark
sequences length from 50 to 100 have been used. Bold entries indicate best values achieved.
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as peffective ¼
P5

i¼2 pi ¼ 20=30. The effective selection
probabilities for corresponding chromosomes (in the
respective order) for Fig. 4b: C1, (C2 or C3 or C4 or
C5Þ, C6, and C7 thus can actually be computed 7/30,
20/30, 2/30, and 1/30, respectively. The fallacy in
this example is that the selection probability of the
chromosome having fitness 5 is actually higher than
that of the chromosome having fitness 7.

That is, the chances of Cmutated being selected for
reproduction in the next generation are lower and it is
likely that the fitter Cmutated can die away due to the
selection fallacy, thereby leading to an effective mutation
rate of pm � 0.

6.3 Proposed CCF Value

From the empirical result in Section 5, we have seen that
TR-80 (i.e., 80 percent and higher percentage of similarity
removal) outperformed the other runs with different CCF
values and the WT runs as well. Therefore, based on the
empirical result, we prefer TR-80 for solving PSP problems.

6.4 Cost of Twin Removal

For the sake of completeness, we have also computed the
cost of twin removal. From our CTR Algorithm (see Fig. 2),
it can be seen that the time complexity is proportional to the
quadratic of the chromosomal length. However, this over-
head may not impact heavily as more time is involved in
handling other parts of the overall process, such as
handling phenotypical rotation, checking for self-avoid-
ing-walk in every move, and so on. To provide an
indication of the cost, we have determined the actual

runtime and included that in Table 6 in Section 7. Thus, for
the sequences ranging from 50 to 100, the TR-x needed
around five times more time compared to WT. However,
the time for each operation, such as mutation and crossover,
is not the same and each of the algorithms mentioned in
Section 7 is not using the same set of operators. Therefore,
straight time-based comparison may not be appropriate.
Further, in this paper, our major concern is to achieve
improved accuracy rather than fast computation as the
accuracy becomes a more important issue for this hard
optimization problem. As we see, many fast algorithms
running for a long time do not produce optimum solutions,
as can be seen in Tables 6 and 7. However, the time for twin
removal issues can be reduced easily by stopping the
comparison immediately after encountering x percent of
dissimilarities in a TR-x approach. Thus, for TR-100, the
comparison between two chromosomes can be stopped as
soon as a single dissimilarity is encountered, or for TR-80,
the comparison can be stopped immediately after encoun-
tering at least 20 percent of dissimilarities and so on.

7 COMPARISON WITH OTHER NONDETERMINISTIC

APPROACHES

To confirm “twin removal” as a generally applicable
component within GAs, we empirically compare TR-80
with other methods in their core forms (since, twin removal
within GA is not domain knowledge dependent). For this,
we discuss the fundamental nondeterministic approaches to
be considered and then extract the core form of the state-of-
the-art PSP algorithms (as named in Section 2).

The major categories of nondeterministic search ap-
proaches in their core forms are mostly covered by the
iterated hill climbing (IHC) approach, SA, and the genetic
algorithm [69]. IHC starts with a random bit string and then
obtains a set of neighboring solutions by single bit changing
(i.e., mutating) of the current solution (Scurr). Among the
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TABLE 6
Comparison of Various Algorithms Based on Benchmark

Sequences (See Table 1)

Here, Min. indicated minimum energy achieved (i.e. maximum fitness),
Med. indicates median and Avg. indicates average, where Gen.
indicates (GA equivalent) generations when the particular fitness value
is achieved. ‘Run Time’ indicates the total run time (in seconds) needed
for 6000 GA or GA equivalent generations. Bold entries indicate best
values achieved.

TABLE 7
Comparison of Various Algorithms Based on PDB Sequences

Here, Min. indicated minimum energy achieved (i.e. maximum fitness),
Med. indicates median and Avg. indicates average, where Gen.
indicates (GA equivalent) generations when the particular fitness value
is achieved. Bold entries indicate best values achieved.
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new solution(s) (Snew) (including the current one), the best is
retained as the current solution (see (1)), with the process
being repeated until the stopping criterion is met. SA uses
the same framework (see (1)), but differs in its acceptance
criterion when the new solution is not better than the
current, SA can still accept the solution based upon some
defined criteria (see (2)):

Scurr  Snew; if fðSnewÞ > fðScurrÞ; ð1Þ

Scurr  Snew; if random½0; 1Þ < exp
fðSnewÞ � fðScurrÞ

T

� �
:

ð2Þ

Here, f is the fitness function and T is a (symbolic
temperature) variable, after having an initial value, T is
gradually decreased in each iteration, which is often
regarded as cooling. SA explores more solution space
compared to IHC, with the randomness introduced for
selection in (1) and (2). The selection approach is regarded
as an MC method and so the SA with MC method is often
simply referred to as MC in the literature [36], [37], [38],
[51]. GA differs by mainly having a population of solutions
and GA obtains new solutions by mixing the current
solutions using a crossover operation, and then randomly
replacing bit(s) by mutation. Next, we analyze the state-of-
the-art approaches to extract their core form.

The GA-based approach proposed by Unger and Moult
pioneered the working paradigm of the nondeterministic
search for the PSP problem using the lattice model. To solve
the PSP problem using the HP model, Unger and Moult
[37], [38] enhanced the Simple Genetic Algorithm (SGA) by
including the selection criteria given in (1) and (2) within
the GA. This selection strategy is referred to as cooling. This
augmented GA or Unger’s GA (UGA) outperformed the
MC variants [36], [37]. We have considered this competitive
approach for comparison with TR-80.

Two variations of MC, named MC algorithm [32] and the
evolutionary Monte Carlo (EMC) [33] algorithm, performed
close to UGA but incorporated most of the components of
UGA and domain knowledge, such as the lattice version of
the known secondary structure. However, the incorporation
of such secondary structure has a potential risk of easily
missing the putative ground energy state [40], especially for
longer sequences. If this is avoided, the reduced core form
ultimately becomes the same as the UGA. Further, Jiang
et al. [34] applied the GA with Tabu search (GTB) for the
2D HP sequences. Tabu search is a local search technique,
which enhances the performance of a local search method
by using memory structures and maintains dissimilar
solutions by rejecting duplicates or closely similar chromo-
somes. However, there tends to be an inordinately large
number of possible solutions [45], [46], [47], [48], and so the
memory requirements tend to be prohibitive for longer
sequences [40]. Similarly, the Elastic Net algorithm with
Local Search method (ENLS) [88] also uses memory
structures to store intermediate results and so also scales
poorly. GTB and EMLS performance deteriorated for
sequences greater than moderate length, whereas our
proposed TR-80 can maintain optimal diversity without
extensive memory requirements. Ant colony optimization

(ACO) has also been applied to the lattice-based PSP
problem [35]. However, using the core ACO algorithm [89],
the outcome is the same as in UGA, but it failed much
earlier [88] for longer sequences.

CSA was developed with the aim of maintaining
diversity by considering conformational distance [90], [91],
conceptually close to TR-80. The CSA was applied to solve
PSP using HP lattice [90] and recently incorporated in
ROSETTA [92], [93], [94], [95], [96]. CSA is basically the
combination of the best part of the GA and Monte Carlo
selection approaches. To apply the CSA, typically two
things are necessary: first, a method for perturbing a seed
conformation, and second, a distance measure between two
conformations to compare their conformational dissimila-
rities, with a view to maintaining diversity. Additionally, a
local optimization method is generally associated with the
CSA approach. For solving PSP using the HP model, four
local moves had been applied (similar to the EMC
approach). Populations are renamed banks in CSA. We
used the core form of the CSA by avoiding the domain
knowledge-based local moves to compare with TR-80.

In summary, the proposed TR-80 approach was com-
pared with SA, IHC [69], Unger’s GA (UGA) [37], and CSA
[90]—all in their core form, and also including WT to
represent Simple GA (SGA) and TR-100 to represent the
impact of identical twin removal attempted by Ronald [67].
To ensure the equity of the analysis, all the different
algorithms were allowed the same effective operations: up
to 6,000 generations of 200 population-based GA equivalent
operations. Both SA and IHC search approaches were run by
including 30 neighbors for IHC in each generation, while for
SA, in addition, the parameters for the cooling temperature
were 2 initially, decreasing by 0.99 every 200,000 steps (set
according to [37]) until the temperature becomes 0.15. The
same is applied for selection strategies in UGA. For each
method and each sequence, at least 5 iterations were carried
out. Tables 6 and 7 compare the results for SA, IHC, UGA,
CSA, WT, TR-100, and TR-80, based upon the benchmark
and PDB sequences, respectively. These tables provide
minimum fitness and the generation when it was achieved,
median value of the fitness and when that was achieved and
the average value of the fitness obtained for each of the
different runs for each individual sequence. The average
values and the runtime (in seconds) for 6,000 GA iterations
(or its equivalent) are also shown.

The performance of SA was the poorest. IHC showed
slightly improved performance over the SA approach.
UGA, CSA, and WT performed close to each other, but
were better than both SA and IHC. TR-100 outperformed
UGA, CSA, and WT in almost all cases. However, TR-80
performed best of all in all cases. It should also be noted
that with increasing length of the sequences, the compara-
tive performance of all the approaches became clearer with
greater difference among the achieved fitnesses.

8 INCORPORATING TWIN REMOVAL WITHIN OTHER

SOPHISTICATED GENETIC ALGORITHMS

To check the effectiveness of our twin removal concept, we
tested the performance of our TR-80 approach by combining
it with 1) more sophisticated GA versions such as UGA and
2) hybrid genetic algorithm (HGA). The HGA version used
the 3D face-centered-cube (FCC) lattice model that we
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developed previously [97]. Table 8 shows the results
comparing the performance of “UGA+TR-80” over UGA
alone. Table 9 shows the comparison for the HGA approach.
The results are found promising: “UGA+TR-80” showed
consistently better solutions than UGA alone, and HGA with
twin removal consistently yielded results with fitness equal
to, or better than, HGA without twin removal.

From these results, it may be concluded that twin
removal is generally an applicable approach yielding
improvements, especially for longer sequences. For the
shorter sequences in Table 9, the difference in performances
appears very small, as can be true when applying any well-
known method. However, for relatively longer sequences,
the superior performance of HGA combined with TR-80
over HGA alone can be distinguished. However, on rare
occasions, performance can be closer based on the simple
HP pattern in the sequences [42], [98].

Among possible limitations of the twin removal ap-
proach, associated overhead and the corresponding remedy
for twin removal have been discussed in Section 6.4.
Another seemingly minor issue could be with the applica-
tion of move-sets or similar operators that can alter the
twins, and thus, affect the diversity. The HGA approach
applied here involves such a move-set [97]. Application of
the move-set could be complementary to the twin removal
approach, since comparatively less twin removal from the
population would be required.

9 CONCLUSIONS

The ease of GA implementations has made GA popular for
solving many optimization problems such as PSP in the form
of a conformational search algorithm. This neglects, how-
ever, the crucial impact the growth of similarity and
chromosome twins has upon the population, which can lead
to premature convergence, a condition that is especially
evident when the application has a complex landscape, as in
longer PSP sequences. Twins cause a population to lose
diversity, resulting in both the crossover and mutation
operations being ineffectual. This paper has highlighted the
need for a chromosome twin removal strategy to maintain
consistent performance. The definition of twins has been
relaxed, not only to embrace duplicate chromosomes, but
also to include highly correlated chromosomes within the
twin removal strategy. Simulation results have been pre-
sented confirming the performance improvement achieved
in the ab initio approach for PSP applications by adopting this
generalized twin removal strategy. Our empirical results
show that a CCF setting �0:8 affords the best performance

for twin removal in terms of balancing optimal convergence
with an effective search capability. The choice of TR-80 with
GA showed outstanding performance compared to other
algorithms in their core form when solving the PSP problem.
Further, the proposed twin removal strategy was demon-
strated to improve the performance of a number of other GA-
based algorithms.

APPENDIX

List of Acronyms

Abbr. Elaboration

ACO Ant Colony Optimization

AIS Artificial Immune System
CCF Chromosome Correlation Factor

CSA Conformational Space Annealing

CTR Correlated Twin Removal

EMC Evolutionary Monte Carlo

ENLS Elastic Net algorithm with Local Search method

FCC Face-Centered-Cube

GA Genetic Algorithm

GTB Tabu Search with Genetic Algorithm
HP Hydrophobic-Hydrophilic

IA Immune Algorithm

IHC Iterated Hill Climbing

MC Monte Carlo

PDB Protein Data Bank

PSP Protein Structure Prediction

SA Simulated Annealing

SAW Self-Avoiding-Walks
TNs Topological Neighboring Contacts

TR-x Twin Removal for similarity �x%

UGA Unger’s Genetic Algorithm

WT Without Twin removal

Abbr. indicates abbreviation.
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TABLE 9
Performance Comparisons: HGA versus “HGA + TR-80”

Here, we compare the predictability of the developed HGA for solving
PSP with and without TR-80. Achieved maximum jfitnessj from 15
iterations is shown for every type of runs. All these runs are simulated for
the same amount of time using same capacity machine and to have a
fair comparison of their performance, runs for same sequence were
terminated once any of runs becomes non-progressive.

TABLE 8
Performance Comparisons: UGA versus “UGA + TR-80”

Here, we compare the UGA versus UGA combined with TR-80 to see
whether TR-80 can improve more sophisticated version of GA other than
simple GA or not. Average (Avg.) fitness from 5 iterations running up to
6000 generations has been compared.
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