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Abstract. Proteins are sequences of amino acids bound into a linear chain that 
adopt a specific folded three-dimensional (3D) shape. This specific folded shape 
enables proteins to perform specific tasks. The protein structure prediction (PSP) 
by ab initio or de novo approach is promising amongst various available computa-
tional methods and can help to unravel the important relationship between se-
quence and its corresponding structure. This article presents the ab initio protein 
structure prediction as a conformational search problem in low resolution model 
using genetic algorithm. As a review, the essence of twin removal, intelligence in 
coding, the development and application of domain specific heuristics garnered 
from the properties of the resulting model and the protein core formation concept 
discussed are all highly relevant in attempting to secure the best solution.  

1   Introduction  

Ab initio protein structure prediction (PSP) is an important and very challenging 
interdisciplinary problem encompassing biochemistry, biophysics, structural  
biology, molecular biology and computational biology to give just a couple of  
examples. Structure prediction, especially in revealing the relationship between 
sequences and protein folding is the key to combating many diseases and the  
development of several crucial biotechnological applications and the ab initio ap-
proach in this regard offers great hope for improving the human condition. More 
than half of the dry weight of a cell is made up of proteins of various shapes and 
sizes and protein’s specific folded three-dimensional (3D) shape (Fig. 1) enables it 
to perform specific tasks. From the computing point of view, the exciting investi-
gations concerning proteins is not necessarily about these molecules carrying out 
vital tasks but mainly about the process of its acquiring various shapes, i.e. protein 
folding problem, which enable it to perform the specific tasks. To solve the PSP 
problem, among other approaches nondeterministic searching approach Genetic 
Algorithms are found promising [1, 2, 3]. On the other hand, to model and to han-
dle the complexity of the protein folding the low resolution model found [4, 5, 6] 
to be effective exploring the vast and convoluted search space in a reasonable time  
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Fig. 1. Nature’s 3D folded protein process (a) primary sequence of amino acid (b) complex 
folding process (c) folded protein [7] 

scale. The low resolution model aids in providing a valuable theoretical insight 
which is otherwise often very hard to extract in the high resolution model.  

In this article, we prefer to provide a review to show how novel techniques can 
improve GA to handle the low resolution based PSP problem, which is yet too 
complex to be solved. Thus in Section 2, the conformational complexity of protein 
structure prediction has been discussed. Section 3 describes the modelling issue of 
the computational protein structure prediction. Section 4 discusses novel computa-
tional techniques to cope the low resolution model. The preference of the face-
centred-cube (FCC) lattice configuration for the PSP problem has been advocated 
in Section 5 and in Section 6 a novel model, named hHPNX model, has been pre-
sented which can remove some limitations of the existing HP and HPNX model 
and thus provides better predictions. Finally, Section 7 draws the conclusions. 

2   Conformational Complexity  

Amongst the 20 different amino acids, any two can join themselves by forming 
peptide bond thus resulting in an amide plane (Fig. 2). Formation of peptide bonds 
and properties of amide plane are very important in providing specific shape to a 
specific polypeptide chain formed from the amino acid concatenation. The amide 
plane is rigid and dihedral angles, ϕ  and ψ  provide flexibility in mobility about 

,2π  around the N-Cα and Cα-C connecting axis. Each of the amino acids can have 
large number of torsion angles χ (see Fig. 2) depending on the length of the side 
chain, however here we assume two per amino acid. To estimate the complexity 
and to test the feasibility of an exhaustive search algorithm can be considered by 
all possible combinations of the shape parameters (e.g., dihedral and torsion dis-
crete angles); if there are n numbers of residues in a particular sequence, the total 
number of conformations ( TotC ) can be expressed as: 

≈TotC ( )( )( )nnn 221)1(21)1(21 ......... χχχψψψϕϕϕ ××××××××× −−  (1)

However, in practice for sterical disallowance, due to the shape and size of the 
atoms and their positioning, some reduction in the degree of freedom is possible, 
which is commonly depicted by the Ramachandran plot [8]. Even though, the  
 

Folding Process 
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Fig. 2. A schematic of a portion of the [Met]-enkephalin [9] molecule’s concatenated amino 
acid sequence, “…- glycine – phenylalanine - methionine”, showing the formation of rigid 
amide plane (virtually shown using shaded plane) and the side-chains of the corresponding 
amino-acids. The mobility of the sequence is mostly due to the angles, indicated by φ and ψ 
over the connection between N-Cα and Cα-C. The side chain torsion angle is shown by χ. 

search space remains astronomically large. For example, with tremendous simpli-
fication, assume each amino having only three discrete angles with three degrees 

of freedom, a 50 residue-long protein sequence will have ≈ )503(3 × possible con-
formations. Now, typically a computer capable of searching 200≈ conformations 

per second would require 618661.5≈  years to confirm the best search result. 
Along with the conformational search complexity, in reality, there are also 

other forces [10] such as hydrophobic interaction, hydrogen bonding and electro-
static forces together with Van der Waals interactions, disulphate bridge, so on 
serve to influence the final 3D conformation. We discuss the existing conforma-
tional investigation techniques in two categories next.  

2.1   Non-computational Techniques  

Non-computational or experimental techniques such as X-ray crystallography 
(XC) [11] and nuclear magnetic resonance (NMR) spectroscopy methods are used 
for PSP. They are very time consuming, expensive and labour intensive [12]. 
Moreover, the NMR becomes less accurate for longer sequence and the crystalli-
zation for XC process may force the protein to have a non-native structure [13].  

2.2   Computational Techniques  

The computational approaches have the potential to correlate and predict the  
primary sequence of a protein to its structure thus can overcome the aforemen-
tioned difficulties associated with the experimental approaches. So, there has been 
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significant research interest [7] into application of computational approaches for 
protein structure prediction. Approaches such as homology modelling [14] (which 
is based on the similarity comparison of the sequence) and threading [15] (which 
is a process to thread together likely short sub-conformation of the corresponding 
subsequence) are based on the database of protein sequences and their correspond-
ing structure. However, as these methods depend on the availability of similar  
sequence samples in the database, their results may become unconvincing for  
dissimilar sequences [4, 5] and they become less accurate for longer sequences as 
the formation of the whole conformation derived from its sub-conformations is 
less likely to match the native conformation because more dissimilarity is added 
between similar fragments [16, 17]. 

Consequently, the ab initio (meaning ‘from the origin’) or de novo approach 
predict folded protein’s 3D structure from its primary sequence alone [18] based 
on intrinsic properties (namely, hydrophobic and hydrophilic) of amino acids. The 
concept of ab initio folding is based on the Anfinsen’s thermodynamic hypothesis, 
which assumes [19, 20] that the native state of the folded protein is the global free 
energy minimum. Together with Levinthal Paradox which Cyrus Levinthal postu-
lated [21], in what it is popularly known as that, “the proteins fold into their  
specific 3D conformations in a time-span far shorter than it would be possible for 
protein molecules to actually search the entire conformational space for the lowest 
energy state. However, in contrast protein cannot sample all possible conforma-
tions while folding, and hence folding cannot be a random process which leads to 
conclude that folding pathways must exist”, which motivates the ab initio based 
computation. However, in practice, as ab initio approach is computationally inten-
sive, usually short protein sequences have been simulated at the atomic level, 
mostly using simplified low-resolution model and simple fitness function. Some 
methods are hierarchical [9, 19, 22] in that they begin with a simplified lattice  
representation and end with an atomistic detailed molecular dynamics simulation 
[23, 24]. With further advancement, the energy functions include atom-based po-
tentials from molecular mechanics packages [25] such as CHARMM, AMBER 
[26] and ECEPP [27]. While ab initio is the most computationally demanding of 
the three computational approaches, it conversely also is the most promising in 
providing reliability, accuracy, usability and flexibility in checking the functional 
divergence of a protein by modifying its structure and sequence. 

3   Models for Structure Prediction  

The most appropriate approach for protein modeling would be to simulate the ac-
tual folding process which occurs in nature [28], such as molecular dynamics 
(MD) (which is based on collaborative motion and energy of the molecules in a 
protein sequence) [29, 30, 31]. However, this is infeasible for two reasons: 

i) The computation time even for a moderately-sized folding transition ex-
ceeds the feasible range even using the current best capable machines  
applying molecular dynamics principles.  
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ii) The forces involved in the stability of the protein conformation are cur-
rently not modeled with sufficient accuracy.  

Thus, to handle the complexities for PSP, models of different resolutions are 
applied, which help transform the continuous large conformational landscape into 
a reduced and discrete search landscape, reducing the timescale of protein motion 
and makes the sampling of the landscape more feasible. Also, the modeling chro-
nology from low to high considers the backbone modeling first and then subse-
quently the side-chain packing and extended modeling. In low resolution models, 
more atoms are grouped together, especially from the same amino acid and then 
treated as a single entity. The most simplified paradigm is the lattice model which 
focuses only upon hydrophobicity by dividing the amino acids into two parts: hy-
drophobic (H) and hydrophilic or polar (P) thereby leads to its popular appellation 
of the HP model [32, 33]. The lattice can have several regular shapes with varying 
numbers of neighboring residues either in 2D or 3D, such as square, cubic, trian-
gular, face-centered-cube (FCC) [22, 34], or any of the Bravais Lattices. Con-
versely, the off-lattice model [35, 36] relaxes the regular lattice structure and both 
lattice and off-lattice normally start with backbone modeling and then increase the 
resolution, breaking the residues into further smaller constituents or considering 
the inclusion of side-chains. In the side-chain-only [37] (SICHO) approach, the 
side chains are initially constructed ahead of the main chain, with the argument 
being that interactions within proteins are due to different characteristics of the 
side chain, while the interactions of the main chain are rather more generic. CABS 
(an acronym for Cα-β and Side group) [38] is a relatively high resolution lattice 
model which assumes a lattice confined Cα representation of the main chain back-
bone, with 800 possible orientations of the Cα–Cα vectors. The lattice spacing of 
the underlying simple cubic lattice is assumed to be 0.61Å. The model assumes 
four united atoms (interaction centres) per residue: α-carbon, centre of the virtual 
Cα–Cα bond (serving as a centre of interactions for the peptide bonds), Cβ (see Fig. 
2) and where applicable, the centre of mass of the side-group. While the coordi-
nates of the α-carbons are restricted to the underlying lattice, the coordinates of 
the remaining united atoms are off-lattice and defined by the Cα-coordinates and 
the amino acid identities. The force-field of this model consists of several poten-
tials that mimic averaged interactions in globular proteins. Finally, the direct  
all-atom [12, 39] model considers all the atoms including the forces. The finest 
possible model applies the theories of Quantum Mechanics (QM) with the princi-
pal simulation paradigm, especially for the all-atom model, being based upon the 
thermodynamics hypothesis, namely that the stable structure corresponds to the 
global free energy minimum. The computation to find the most stable energy-free 
state is based on MD [12, 30] using the collaborative motion and energy of the 
molecules involved from the protein and solvent. In MD simulation [40], the sys-
tem is given an initial thermal energy and the molecules are allowed to move in 

accordance with MD principles. After a short time delay, typically 1510− to 410−  
seconds, forces are used to calculate the new position of the atoms, which  
produces the atomic coordinates as a function of time. IBM’s Blue Gene [40, 41] 
project involved such an effort with peta-FLOP capability (1015 floating point  
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operation per seconds). This is still however, many orders of magnitude lower 
than the requirement for a realistic solution.  

With the objective of successfully building an effective computational strategy 
to unravel the complexities of the sequence-to-folding relationship, even using the 
well-established HP model, an efficient and robust solution has still to be devel-
oped. In highlighting the various computational intelligence approaches for ab ini-
tio PSP, the next section focuses mainly upon the low resolution HP model. 

The HP Model 

The HP model introduced by Dill [32, 33] is based on the fact that the hydropho-
bic interactions dominate protein folding. The Hs form the protein core freeing up 
energy, while the Ps, have an affinity with the solvent and so tend to remain in the 
outer surface. For PSP, protein conformations of the sequence are placed as a self-
avoiding walk (SAW) on a 2D or 3D lattice. The energy of a given conformation 
is defined as a number of topological neighbouring (TN) contacts between those 
Hs, which are not sequential with respect to the sequence.  

PSP is formally defined as: for an amino-acid sequence nsssss ,,,, 321 L= , a 

conformation c needs to be formed whereby )(* sCc ∈ , energy 

{ }CccECEE ∈== |)(min)(*  [42], where n is the total amino acids in the se-

quence and )(sC  is the set of all valid (i.e., SAW) conformations of s. If the num-

ber of TNs in a conformation c is q then the value of )(cE  is defined as qcE −=)(  

and the fitness function is q−=F . The optimum conformation will have maxi-

mum possible value of |F|. In a 2D HP square lattice model (Fig. 3. (a)), a non-
terminal and a terminal residue, both having 4 neighbours can have a maximum of 
2 TNs and 3 TNs respectively. In a 2D FCC HP model (Fig. 3. (b)), a non-terminal 
and a terminal residue both having 6 neighbours can have a maximum of 4 TNs 
and 5 TNs respectively. 

Many of the successful PSP software such as ROSETTA [4, 43], PROTINFO 
[44, 45], TASSER [46] use various resolution of models embedded into the  
 

 

  
(a) (b)

Fig. 3. Conformations in the 2D HP model shown by a solid line. (a) 2D square lattice hav-
ing fitness = - (TN Count) = -9. (b) 2D FCC lattice having fitness = -15. ‘ ’ indicates a 
hydrophobic and ‘ ’ a hydrophilic residue. The dotted line indicates a TN. Starting resi-
due is indicated by ‘1’. 
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hierarchical paradigm [6, 46−49] to cope with the high computational complexity. 
The low resolution model can be used to determine the backbone of the 3D con-
formation and can passes it to the next step for further expansion.  

4   Search Algorithms 

The PSP in HP lattice model has been proven to be NP-complete [50, 51], which 
implies that neither a polynomial time nor an exhaustive search [52−55] methodol-
ogy is feasible. Thus the non-deterministic search techniques have dominated  
attempts, of which there are ample approaches such as, Monte Carlo (MC) simula-
tion, Evolutionary MC (EMC) [56, 57], Simulated Annealing (SA), Tabu search 
with Genetic Algorithm (GTB) [58] and Ant Colony Optimization [42], though be-
cause of their simplicity and search effectiveness, Genetic Algorithm (GA) [1− 3, 7, 
9, 59, 60] is one of the most attractive [2, 59]. Therefore, we focus on GA and we 
starts with preliminaries on GA associated with PSP problem in low resolution.  

4.1   Underlying Principle of Nondeterministic Search and GA Preliminaries 

The algorithm shown in Fig. 4. provides a generic framework for the nondetermin-
istic search approaches. 
 

 

Fig. 4. Template for a nondeterministic search approach 

 

  
(a) (b) 

Fig. 5. An example showing (a) 1-point crossover, (b) mutation by 1 bit flipping 

 

1. Initial random solution generated randomly or, using domain knowledge. 
2. Obtain new solution ( newS ) from the current single solution ( currS ) or pool 

of solutions using special operator/operation defined by individual approaches. 
3. Assess the quality or the fitness F of newS . 

4. IF F indicates improved solution accept newS , ELSE accept/reject based on 

special criteria. 
5. IF END-OF-SOLUTION is not reached THEN go back to Step 2. 



324 M.T. Hoque, M. Chetty, and A. Sattar 
 

 

 
 

(a) (b) 

Fig. 6. An example of mutation operation [2]. Dotted lines indicate TN. Residue number 11 
is chosen randomly as the pivot. For the move to apply, a 180° rotation alters (a) with  
F = -4 to (b) F = -9. ‘ ’ indicates mutation residue. 

Nondeterministic approaches can vary base on the steps shown in Fig. 4. For 
instance, Hill Climbing approach [61] starts (step 1) with a random bit string and 
then obtains (in step 2) a set of neighboring solutions by single bit flipping of the 
current solution. Then, the best is keep as the new current solution and the process 
is repeated until the stop criterion is met. SA uses the same framework, but differs 
in its acceptance criteria (step 4): When the new solution is not better than the cur-
rent, the algorithm can still accept it based upon some randomly defined criteria. 
GA uses a pool of solution (step 2), named population and obtains new solution by 
crossover (see Fig. 5 (a)) and mutation (see Fig. 5 (b)) operators. In the PSP con-
text, mutation is a pivot rotation (see Fig. 6) which is also followed in crossover 
operation (see Fig. 7). 

 
 

 
  

(a) (b) (c) 

Fig. 7. An example of crossover operation [2]. Conformations are randomly cut and pasted 
with the cut point chosen randomly between residues 14 and 15. The first 14 residues of (a) 
are rotated first and then joined with the last 6 residues of (b) to form (c), where fitness,  
F = -9. ‘ ’ is indicating crossover positions. 

GAs optimize the effort of testing and generating new individuals if their repre-
sentation permits development of building blocks (schemata), a concept formal-
ized in the Schema Theorem [1, 61−70]. In each generation of a GA, the fitness of 
the entire population is evaluated by selecting multiple individuals from the cur-
rent population based on their fitness before crossover is performed to form a new 
population. The ith chromosome iC  is selected based on the fitness if  with the 

proportionate selection ( )ffi , where f  is the average fitness of the population. 
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Parents then produce off-spring by crossover at a rate cp  for the population of 

size zPop , thus forming the next generation. Mutation is applied on the popula-

tion of generated off-spring at a rate mp  and the selection probability of any off-

spring or chromosome is again ( )ffi . A small percentage, typically between 5% 

and 10% of elite chromosomes (those having higher fitness), are copied to the next 
generation to retain potential solutions. The remaining chromosomes (if they ex-
ist), which are unaffected by crossover, mutation or elitism operations are then 
moved to the next generation. 

Throughout this article, a short sequence will imply a sequence with 25<n   
( n  indicates the number of residues in a sequence or the protein length), a moder-
ate length will imply 5025 <≤ n  and long sequences will imply 50≥n . 

4.2   Incorporating Intelligence into the GA 

The fundamental basis of the GA, the schema theorem, supports that schema fit-
ness with above average values in the population will more likely be sustained  
as generations proceed and as a consequence the similarity [61, 64, 71−73] of 
chromosomes grows within the population, thus grows twins (same or similar 
chromosomes) leading lower variations within the population. The existence of 
twins  and the requirement for their removal in a GA is not new, as their growth 
was considered in evaluating the cost of duplicate or identical chromosomes in 
[72]. It suggested starting each chromosome with different patterns to avoid twins, 
but if twin growth is inherent in a GA search, then the effect of initialization using 
different patterns will decline relatively quickly for long converging problems. 
Also, [61] advocated that if a population comprised all unique members, tests need 
to be continually applied to ensure identical chromosomes did not breed. If chro-
mosome similarities within population do not grow, then the GA may not con-
verge as the search process effectively remains random rather than stochastic, 
while if similarities grow, then finding a non-similar chromosome to mate with 
clearly becomes more scarce because of the inevitable occurrence of twins, and 
the increasingly high cost of finding dissimilar chromosomes in a lengthy conver-
gence process.  

To solve, the need for twin removal was originally highlighted in [73]. The 
study however, was confined to the detection and removal of identical chromo-
somes only. Recently, in [71], the notion of twins was broadened by introducing 
chromosome correlation factor (CCF) [71] which defines the degree of similarity 
existing between chromosomes, and it was shown that by removing chromosomes 
having a similarity value greater than or equal to specific value of CCF during  
the search process enables the GA to continue seeking potential PSP solutions  
to provide superior results and helps overcome fallacious effect (see Fig. 8) of the 
selection procedure. 
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Fig. 8. The probability of a chromosome kC  (with fitness kf ) being selected by roulette 

wheel selection, is =kp ∑
=

n

i
ik ff

1

/ . So, for a population of eight chromosomes having fit-

nesses 8, 6, 6, 6, 6, 6, 4 and 1 for example, the proportionate selection probability of the 
first chromosome will be )43/8(1 =p , and similarly )43/6(2 =p , …, )43/1(8 =p . The 

fallacy is, from the pie-chart, we see the fitness 6 occupies 68% in total (assume chromo-
somes having the same fitness are identical), so the effective selection probability is, 

=
2effectivep  ∑

=

6

2i
ip 43/30= or, 70% instead of 14%. 

Table 1. Benchmark protein sequences for 2D HP model 

Length Sequences   Ref. 

50 H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2 [74]  

60 P2H3PH8P3H10PHP3H12P4H6PH2PHP [74]  

64 H12(PH)2(P2H2)2P2HP2H2PPHP2H2P2(H2P2)2(HP)2H12 [74]  

85 4H4P12H6P12H3P12H3P12H3P1H2P2H2P2H2P1H1P1H [75]  

100a 
6P1H1P2H5P3H1P5H1P2H 4P2H2P2H1P5H1P10H1 
P2H1P7H11P7H2P1H1P3H6P1H1P2H 

[75]  

100b 
3P2H2P4H2P3H1P2H1P2H1P4H8P6H2P6H9P1H1P2H1P11H2P3H1P2H1P1
H2P1H1P3H6P3H 

[75]  

‘H’ and ‘P’ in the sequence indicate hydrophobic and hydrophilic amino acid, respectively. 

Outcome of the Twin Removal 

Simulations were undertaken both with (CCF ≤  1) and without the twin (WT) 
removal strategy implemented in the population, with in the former case, the twin 
removal being performed after the crossover and mutation operations. In every 
generation, twins were removed in all runs for a range of CCF settings from r = 
1.0 (identical chromosomes) down to r = 0.5 (the least chromosome similarity, 
i.e., 0.5≤ CCF≤ 1.0) in steps of 0.1. Following twin removal from a population, 
the gap was filled by randomly generated chromosomes. The default GA parame-
ters [71] for all experiments were set for population size, crossover, mutation  
and elitism rates as 200, 0.8, 0.05 and 0.05, respectively, and the 2D square HP 
lattice model was applied to the various benchmark sequences (Table 1). The  
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Table 2. Run results for 5 iterations of PSP for various sequences using GA. Each iteration 
has maximum generation = 6000, the average fitness of the runs is shown below. 

Length WT r =1.0 r = 0.9 r = 0.8 r = 0.7 r = 0.6 r = 0.5 

60 -29.4 -32.6 -33.4 -33.8 -32.2 -32.4 -32.6 

64 -29.4 -34.2 -35 -37 -35.4 -34 -32.2 

85 -42.2 -45 -47 -46.8 -46.2 -45 -44.4 

100a -38.6 -39.4 -42.4 -43 -42.4 -42.4 -40.8 

100b -37.4 -40.4 -42.6 -44.8 -42.8 -42.2 -42  

 

corresponding results are displayed in Table 2, indicate that twin removal with  
r = 0.8, i.e., having 80% and above similarity being removed, has obtained the 
best performance. Introduction of the twin removal helps improved generically.  

4.3   Intelligence in Chromosomal Encoding 

The encoding used in the HP lattice models was mainly isomorphic, which  
add unwanted variations for the same solution (conformation). Non-isomorphic 
encoding scheme [76] further constrains the search space, aids convergence and 
similarity comparisons are made easier while applying a twin removal and re-
moves implicit controlling of the crossover and mutation rates (see Fig. 12), thus 
provides superior results. 

 

  
(a) (b)

 

Fig. 9. Absolute moves (a) 2D square lattice based representation and (c) 3D cube lattice 
based representation. (b) Coordinate frame used for encoding. 

In the literature, four different encoding strategies have been reported [76]: i) 
Direct coordinate presentation, ii) Absolute encoding, iii) Relative encoding and 
iv) Non-isomorphic encoding. Rather than using a binary string, preference to use 
conformations themselves is known as direct coordinate presentation. 

 

     

(a) (b) (c) (d) (e) 
 

Fig. 10. The relative moves in 3D, namely (a) Straight / Forward (S or F) (b) Left (L) (c) 
Right (R) (d) Up (U) and (e) Down (D). However, Backward (B) move does not need a self 
avoiding walk. 
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Absolute encoding [34, 42, 77−79] replaces the direct coordinate presentation 
with letters representing directions with respect to the lattice structure. The permit-
ted moves for absolute encoding are: f (forward), l (left), r (right), b (back), u (up) 
and d (down) (see Fig. 9), while u and d indicate +z and –z direction respectively. 

A conformation c in 2D with n residues could be { } 1,,, −∈ nbrlfc  while in 3D it 

would be { } 1,,,,, −∈ ndubrlfc . Alternatively, in relative encoding the move direc-

tion is defined relative to the direction of the previous move as shown in Fig. 10, 
rather than relative to the axis defined by the lattice. These moves are lattice 
automorphic [34], with the initial move always expressed by F (forward). A con-

formation c of n residues in 2D and 3D could then be { } 2,, −∈ nRLFc and 

{ } 2,,,, −∈ nDURLFc , respectively. Relative encoding (Fig. 10) was developed 

with a view to improving presentation over absolute encoding with pivot mutation 
being represented as the single locus or character alteration of a chromosome as 
shown in Fig. 11. 

  
(a)                                (b) 

Fig. 11. (a) Single mutation at residue number 6 (red colour) using absolute encoding using 
changes in genotype and in the corresponding phenotype is not a pivot rotation (b) Single 
mutation at residue 6 using relative coding results in true pivot rotation 

 
                        (a)                                           (b)                                              (c) 
 

Fig. 12. The cross-exchange indicated by the dotted contour in the identical conformations 
(a) and (b) result conformation in (c), which can also be constructed from (a) or (b) by ap-
plying mutation (i.e. pivot rotation) at residue number 5. Hence, the crossover can result 
equivalent to the mutation operation for identical parents. 
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It is clear that the coordinates of a rotating object change so direct coordinate 
presentation is inherently isomorphic. Moreover as shown in Fig. 13 and Fig. 14, 
absolute and relative encodings are also isomorphic. Thus, a non-isomorphic en-
coding algorithm is essentially proposed in [76] by assigning a fixed directions for 
a growing chain based upon the first occurrences of the move in a particular di-
mension. The direction from first residue towards the second is marked ‘1’ and the 
reverse is marked ‘2’, which defines the complete move in 1-dimension. The first 
occurrence of a direction perpendicular to the 1-dimension is marked as ‘3’ and 
the reverse as ‘4’, which completes the moves in 2-dimensions. The first occur-
rence of the move perpendicular to the plane formed by ‘1’ and ‘3’ moves  
is marked as ‘5’ and the reverse as ‘6’, which finally defines the moves in  
3-dimensions.  

 

Fig. 13. Absolute encoding is isomorphic. For six directions, namely +x, -x, +y, -y, +z and -
z, )46(24 ×=  different genotypes are possible for a given 3D conformation. 

 

Fig. 14. Relative encoding is isomorphic. Four variations shown in 3D by rotating around 
axis formed by 1-2 connecting line, but no variation achieved by the change in direction  
(x or y or z). 

4.4   Domain Knowledge Based Heuristic  

Despite the aforementioned improvements, PSP remains an intractable problem 
because during the search, the solution becomes phenotypically more compact, 
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thereby increasing the number of collisions [3, 57]. To solve, alternate operators 
and move sets have also been applied [75]. An operator that is able to move the in-
tended portion of the converging conformation with a predefined target, while 
concomitantly having minimal impact on the stable portion, exhibits considerable 
promise. One such operator, short pull move, or pull move was proposed by Lesh 
in the square 2D lattice model [75], which subsequently extended by Hoque et al. 
[3], with the introduction of the tilt move, which is applicable when other moves 
fail due to congestion. The tilt move however can disturb the stability more than 
the pull move. A selective implementation of the move sets based on current sce-
nario could represent a powerful combination such as for instance, firstly attempt-
ing a diagonal move [3] and if this cannot be performed to reach a predefined goal 
then next applying a pull move and then a tilt move if the pull move perchance 
fails. Fig. 15 describes these moves in further detail. 

Lesh’s experiment demonstrates the superior performance in achieving the 
minimum energy conformation for longer sequences using the pull move in moving 
 

 

   
(a) (b) (c) 

Fig. 15. Various move operators (a) if ‘D’ is free, then ‘B’ can be move to ‘D’ via a diago-
nal move. (b) Before and after applying pull move is displayed. In first case ‘B’ can be 
pulled to ‘B´’ if ‘C´’ is free or ‘C’ is already at the position of ‘C´’ and the rest of the chain 
upto one end can be pulled until a valid conformation is reached. (c) Tilt move, ‘C’ and ‘D’ 
can be moved to ‘C´’ and ‘D´’ respectively and pull will propagate towards both ends. 

    

(a) (b) (c) (d) 

Fig. 16. The subsequence -123- in (a) need to remap to sub-conformation corresponds to –
HPPH-. If the position 2′  is free then 2 can be placed at 2′  and a pull (indicated in (a)) 
applied towards the higher indexed end. The pull moves 3 to 2, 4 to 3 and 5 to 4 and then 
finds a valid conformation without pulling further leaving (b). The |fitness| in (b) is in-
creased by 1. In (b) assume, 4′  and 5′  are free positions and the segment 3 to 6 can be 
recognized as –PHHP-. To enforce a mapping to highly probable sub-conformation, 4 and 5 
can be shifted to 4′ and 5′  respectively applying a pull move which results (c). In (c), 8 
can pass through position 9, 10, 11 and results (d) and increases |fitness| by 1 further. The 
position of H-Core centre (HCC) (‘ ’) is the arithmetic mean of the coordinates of all Hs. 
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(a) (b) 

Fig. 17. Metaphoric HP folding kernels for (a) Cube 3D Lattice (b) 3D FCC lattice 

     

(a) (b) (c) (d) (e) 

Fig. 18. Potential sub-conformation in 3D space for the subsequence. Sub-conformation in 
(a) relates to –HPH- ( pS1 ), (b) relates to –PHP- ( HS1 ) and (c) related to -HPPH- ( PS2 ). 

Further, both (d) and (e) relate to -PHHP- ( HS2 ). Symbol ●, ○ and , respectively indi-

cate an H, a P and the approximate position of HCC. 

phonotypically compact conformation, but it also provides lessons that random ap-
plication of the move can consume significant computational resources. Hoque et al, 
has subsequently proven that incorporating domain specific knowledge [3, 80−82] 
with the move and their combinations afford considerable promise. As illustrated in 
Fig. 16, the pull move in both 2D and 3D FCC model helps to improve the fitness. 
Furthermore, as the parity problem is absent in the FCC model, the pull move does 
not need to be moved diagonally [81, 82] to start as in an ordinary pull because with 
more neighbours, the model is likely to get a valid conformation without the need to 
propagate the pull often upon the terminal residue.  

Further, Hoque et al. [3, 80−82] conceptualised the folded protein as a three-
layered kernel (Fig. 17). The inner kernel, called the H-Core, is assumed compact 
and mainly formed of Hs while the outer kernel consists mostly of Ps. The H-Core 
[83] Centre is named HCC. The composite thin layer between the two kernels 
consists of those Hs that are covalent-bonded with Ps and is referred to as the HP-
mixed-layer. To integrate domain knowledge, Hoque et al, showed that the opti-
mal core for a square 2D [3], cube 3D [80], 2D FCC [81] and 3D FCC [82] lattice 
are square, cube and regular hexagon respectively, which concludes the optimal 
core that maximizes the |fitness| can be predicted based upon the properties  
and dimension of the model. To form the cavity of H-Core Hoque et al. further  
introduced, motifs or sub-conformations based approach which are highly  
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probable to a sub-sequence (defined in Fig. 13 for 2D FCC) are forced to re-map. 
The rationale is to form immediate TN and place P as far away as possible from 
HCC while concomitantly placing H as near as possible to the HCC. For the map-
ping, two broad categories of sub-sequences are defined; HgS  and PgS , 

where Ν∈g , where Ν  is a natural number. These two categories completely 

cover the HP-mixed-layer including outer kernel. Let HS  and PS  represent seg-

ments of H and P respectively. A segment refers to a contiguous string of 
length g , e.g. HS2  means -PHHP-, so 2=g  with the two boundary residues be-

ing of the opposite type. g is divided into even eg  and odd og  numbers. For 

pS1 , HS1 , PS2 and HS2 , there are only a few possible sub-conformations, so 

only highly potential sub-conformations (Fig. 18) are chosen, based on embedded 
TN and core formation [83, 84] concepts. Collectively they are referred to as H-
Core Boundary Builder Segments (HBBS) [3] and are mapped to potential sub-
conformations which are known as H-Core Boundary Builder sub-Conformation 
(HBBC). HBBC forms part of a corner (especially when 1=g  and through the 

composition with other group having 2=g ) and an edge (especially when 2=g  

and with the composition of the former group) of the H-Core boundary. The selec-
tion for mapping HBBC into HBBS is probabilistically applied while searching. 

Formulation of Multi-Objectivity  

Combining the moves with domain knowledge, Hoque et al., formulated the pre-
diction into multi-objective optimization [3, 80−82] by combining an additional 
probabilistic constrained fitness (PCF) measure along with the original fitness. 
When searching for an optimum conformation, if any member of a HBBC corre-
sponds to the related sub-sequence exists PCF rewards otherwise penalizes the 
search.  

Implementation of the Heuristics in a way to Enable Backtracking Capacity 

Here aforementioned heuristics are combine strategically as: The conformational 
search process is divided into two alternative phases namely, Phase 1 (see (4)) in 
which F dominates PCF and starts building the core. In the alternate Phase 2 (see 
(4)), PCF dominates which covers the formation of an HP-mixed-layer, i.e. the 
Core boundary. The enforcement of HBBC is also performed in Phase 2, since 
PCF helps to sustain and stabilize any applied change. The HBBC mapping is per-
formed only if they are not found according to the likely sub-conformations for 
the corresponding sub-sequences. This may reduce the achieved fitness F, but it is 
expected that it will help reformulate a proper cavity that will maximize the H 
bonding inside the core, while shifting to the favorable Phase 1 will maximize F . 

As the phases alternate during the search process (using (3)), the impact becomes 
such that F and PCF come up with common goal that is more likely to be optimal. 
The total or combined fitness is defined as:  
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PCFtFtFitnessTotal ×+×= )()( βα  (2) 

where t is tth generation while search is carried out by the GA. To adjust the 
weights α  and β  to dominate F and PCF over each other, the oscillatory func-

tion )(tδ  shown in Fig. 19, is introduced. The setup maintains a variation in the 

amplitude (A).  

 
Fig. 19. Plot of )(tδ function 

 

ttAt m 0cos)cos1()( ωωδ +=  (3)

where 0ωω <<m and t = number of generations. The assignment of α and β are as:   

Phase 1: 1)(),()( == ttt βδα , when 0)( >tδ  (4) 

Phase 2: )()(,1)( ttt δβα −== , when 0)( <tδ  (5) 

Transient Phase: 1:)(,1:)( == tt βα , when 0)( =tδ  (6) 

Typical parameter values for the )(tδ  function (see plot in Fig. 19) were set as 

follows: A = 30, mω = 0.004 and 0ω = 0.05. The choice of A came from 

( )llA PCF,Fmax2 ≥  where lF  and lPCF  respectively imply the upper bounds 

of F and PCF, which is predictable from the chosen model. The lower bound of F 
can be defined by (7) for 2D square and 3D cube HP lattice model and (8) for 2D 
FCC and 3D FCC model. 

HTl nSeqOSeqEF +−= ]})[],[(min{dim**2  (7) 

( )
HTHl nnF +×−= dim  (8) 

where in (7), ][SeqE and ][SeqO  indicate the number of even and odd indexed H 

residues in the sequence and 
HTn indicates number of terminal H residue, where 
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20 ≤≤
HTn . The value of dim in (7) for 2D square and 3D cube HP lattice model 

is 1 and 2 respectively (and in (8) for 2D FCC and 3D FCC the values are 2 and 5 
respectively). The ‘min’ implies ‘minimum of’. The Hn  in (8) indicates the total 

number of hydrophobic residues. Note, the minimum value of both |)(| tα  and 

|)(| tβ  is 1 and so never becomes zero in (4), (5) and (6), thereby preserving the 

sub-conformation or schema possessing good features, that may have been created 
in the alternate phase. The search uses a simple GA (SGA) paradigm which is hy-
bridized (see Algorithm 1) with the aforementioned move sets, PCF etc with a 
population size of 200 for all sequences. The elite rate = 0.1, crossover rate = 0.85, 
mutation rate = 0.5 and single point mutation by pivot rotation was applied. The 
implementation of both crossover and mutation operations were as in [2], but 
without any special treatment such as cooling. The roulette wheel selection proce-
dure was used. 

 
 

The experiment results were very impressive (see Table 3) and outperformed in 
all available low resolution models including square 2D [3], cube 3D [80], 2D 
FCC lattice [81] and 3D FCC lattice model [82]. This general concept is referred 
to as guided GA [3, 80] or hybrid GA [12, 81], and it importantly provides a intel-
ligent backtracking capability if any local minimum is assumed. Combining HGA 
with twin removal (as mentioned in Section 4.1) having r = 0.8, it was shown in 
[82] to obtain best performance over the form of i) SGA, ii) SGA + r = 0.8 and iii) 
HGA - for the 3D FCC lattice model.  

As there could be a number of possible lattice structure or orientations [34], we 
next justify the preferred on for PSP problem (in Section 5) and modify the two 
bead HP model further to improve the prediction in Section 6. 

 

Algorithm 1. HGA for PSP 
Input :  Sequence S.  
Output:  Conformation with best fitness, F. 
  COMPUTE: PCF, A.    t = 0, F = 0  /* Gen. count and fitness initialization */ 
  Populate with random (valid) conformations based on S. 
WHILE  NOT Terminate Condition  
   { t = t + 1,  COMPUTE δ(t), α(t), β(t), TF 
    CROSSOVER and then MUTATION     
     IF δ(t) < 0 THEN  
        { FOR i =1 to population_size DO 
           Check chromosome

i
 for any miss mapping of HBBC based on Model. 

          IF miss-mapping = TRUE THEN  
            {Re-map the sub-sequence to corresponding HBBC using move-sets.}}          
          COMPUTE: TF, SORT, KEEP Elite 

          F  Best fitness found from the population. } 
END. 
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Table 3. Performance comparison of nondeterministic search approaches [12] using 2D HP 
square lattice model 

Length / Sequence 

G
G

A
 [

3]
  

G
T

B
 [

58
] 

 

E
M

C
 [

57
] 

 

G
A

 [
2]

  

M
C

 [
2]

  

C
I 

[8
5]

  

20 /  (HP)2PH(HP)2(PH)2HP(PH)2 -9 -9 -9 -9 -9 -9 

24 /  H2P2HP2HP2(HPP)4H2 -9 -9 -9 -9 -9 -9 

25 /  P2HP2H2P4H2P4H2P4H2 -8 -8 -8 -8 -8 -8 

36 / P3(H2P2)2P2H7P2H2P4H2P2HP2 -14 -14 -14 -12 -13 -14 

48 / (P2H)2(HP2)2P4H10P6(H2P2)2HP2H5 -23 -23 -23 -22 -20 -23 

50 / H2(PH)3PH4PH(P3H)2P4H(P3H)2PH4P(HP)3H2 -21 -21 -21 -21 -21 -21 

60 / P2H3PH8P3H10PHP3H12P4H6PH2PHP -36 -35 -35 -34 -33 -35 

64 / 12(PH)2(P2H2)2P2HP2H2PPHP2H2P2(H2P2)2 (HP)  2H12 -42 -39 -39 -37 -35 -40 

5   Preferred Lattice Structure for PSP 

A number of lattice models are used for studying the PSP problem. However, to-
wards preferring a lattice structure or orientation in 3D for effectively mapping the 
real folded protein, we advocate the preference of the 3D face-centred-cube (FCC) 
orientation for the following reasons: 

i) Based on the full proof of Kepler Conjecture [86], a 3D FCC is proven to be 
the densest sphere packing orientation. It can provide densest protein core 
[87] while predicting a protein structure (though the protein core may not 
necessarily need to be in the most compact form [88]).  

ii) In 3D FCC orientation, a residue can have 12 neighbours in a 3D space [82]. 
Such orientation allows maximum excluded volume for offering densest 
compactness [3, 80, 81]. Therefore logically inferring, for a region with 
fixed volume, an FCC model has more option for placing a residue in suit-
able neighbouring position with respect to another residue than any other 
lattice models. A rudimentary example is, the FCC model is parity [88] 
problem free, whereas the square or the cube lattice is not.  

iii) Therefore, within the lattice constraints, the FCC lattice can provide maxi-
mum degree of freedom and FCC can provide closest resemblance to the 
real or high resolution folding [3, 75, 80, 81]. 

 

In the FCC orientation, if its 12 neighbours are assumed to be covered with a 
thin outer layer, the overall structure resembles to a cuboctahedron [3, 80, 82] (see 
the shape of the inner kernel in Fig. 17 (b)), where a cuboctahedron has 14 faces, 6 
of them are square and 8 of them are equilateral triangle and it has 12 corners of 
vertices. 
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6   hHPNX – An Extension of the HP Model 

For an effective and faster exploration of the PSP landscape, the lattice models are 
indispensable. However, this crucial HP model (i.e. for interaction potential, see 
Fig. 20 (a)) having two beads, produces relatively large number of degeneracy [89] 
(i.e., the chance of different possible conformations but having same ground state 
energy), consequently which can result in useful conformations being lost in the 
multitude. Second, the positions of polar segments (i.e. P) are not optimized [90], 
can result in deformed structures, especially if the segment is too long or located at 
the end of the sequences. Thus necessarily a modification and an extension to the 
HP model, keeping  simplicity as much as possible, lead to proposing the HPNX 
model (for interaction potential, see Fig. 20 (b)), where a logical extension of the 
HP model being proposed [79, 89]. In the HPNX model, the splitting of P (polar) 
monomer of HP model is actually based on the variations of electric charge, 
namely positive (P), negative (N) and neutral (X) among amino acids. 

       

 

                                                  

          
              (a)                               (b)                                               (c)          

 

Fig. 20. Interaction potential matrixes of (a) HP (b) HPNX [89] and (c) hHPNX model. 
Negative entry indicates reward for being topological neighbors (TN) in the lattice model, 
whereas interaction for TN with positive value represents a penalty, ‘0’ indicates neutral 
(i.e., no) interaction. 

However, based on many structural observation of a protein data sets Crippen 
proposed [91] a new potential interaction matrix as shown in Fig. 21 (a), where the 
amino acids where divided into four different groups. Crippen emphasized the 
small set of particular group for the certainty of their distinguishing properties, 
namely Alanine (Ala or A) and Valine (Val or V). It has been detected [92] that 
this particular element of the matrix highlighted in Fig. 21 (a) was converted with 
few wrong entries by Bornberg [79] as shown in the matrix of Fig. 21 (b). and 
named YhHX matrix. 

The emphasised [91] small group {A, V} has highest frequency among proteins 
on an average compared to the occurrence frequencies of all the amino acids [93], 
and hence it is important to amend the incorrect conversion of the element (2, 2) 
of matrix in Fig. 21 (a) to element (2, 2) of matrix in Fig. 21 (b). The element de-
picts the ‘hh’ interaction of the YhHX matrix of Fig. 21 (b). Note that h ≡ {A, V},  
 

 H P

H -1 0

P 0 0

 H P N X

H -4 0 0 0

P 0 1 -1 0

N 0 -1 1 0

X 0 0 0 0

 h H P N X 

h 2 -4 0 0 0 

H -4 -3 0 0 0 

P 0 0 1 -1 0 

N 0 0 -1 1 0 

X 0 0 0 0 0 
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(a)                                           (b)                               (c)     

Fig. 21. (a) Crippen’s matrix [91]; classifies amino acid contacts, presented using single let-
ter: 1 = {GYHSRNE}, 2 = {AV}, 3 = {LICMF} and 4 ={PWTKDQ}. (b) YhHX matrix as 
converted by Bornberg in [79] from Crippen’s matrix. Here, fq. implies the percentage of 
occurrence frequencies of amino acid for each of the four groups. (c) Corrected YhHX as it 
should have been considered in [79]. Blacked and shared entries in (a), (b) and (c) are the 
problem area. 

should have been recorded as ‘2’ instead of this highlighted element being incor-
rectly shown as ‘-2’ in Fig. 21 (b) which can be easily observed comparing rest of 
the entries of the original matrix in Fig. 21 (a) with entries of the matrix in  
Fig. 21 (b). Further, the frequencies, indicated by ‘fq.’ and the shaded elements 
shown in Fig. 21 (b), also need to be swapped. Moreover, the “10%” mentioned in 
the YhHX matrix needs to be corrected as 20%. The corrected matrix, incorporat-
ing all necessary changes, is shown in Fig. 21 (c). To incorporated further the es-
sence of the HPNX model with the aforementioned correction, an hHPNX model 
has been proposed (see interaction potential, Fig. 20 (c)) [92]. In this hHPNX 
model basically the H of HP or HPNX model has been split into two by indicating 
h ≡ {A, V}, leaving the rest of the members of the H group as it is. 

To compare, HP, HPNX and hHPNX model, developed HGA (reported in Sec-
tion 4.3) was applied on sequences taken arbitrarily from Protein Databank (PDB) 
[94], measuring the models’ output using ‘alpha-carbon ( αC ) root-mean-square-

deviation’ (cRMSD) [34]. As expected, hHPNX performed the best [92]. 

7   Conclusions 

The ab inito protein structure prediction (PSP) is an important yet extremely chal-
lenging problem. It urges to involve a considerable amount of computational intel-
ligence. Low resolution or simplified lattice models are very helpful in this regard 
to explore the search landscape of astronomical size in a feasible time scale. Due 
to the nature of the complex PSP problem, nondeterministic approaches such as 
genetic algorithm (GA), especially for its potential operators found to be relatively 
promising for conformational search. However, even GA often fails to provide 
reasonable outcome especially for longer sequences and also without the effec-
tiveness in the conformational search in low resolution, the full-fledged prediction, 
which encompasses low to high resolution modelling in a hierarchal system, 
would suffer later on. Therefore, a way to improve the nondeterministic search 

 1 2 3 4

1 -0.012 -0.074 -0.054 0.123

2 -0.074 0.123 -0.317 0.156

3 -0.054 -0.317 -0.263 -0.010

4 0.123 0.156 -0.010 -0.004

 Y h H X 

Y 0 -1 -1 2 

h -1 -2 -4 2 

H -1 -4 -3 0 

X 2 2 0 0 

fq. 10 16 36 28 

 Y h H X 

Y 0 -1 -1 2 

h -1 2 -4 2 

H -1 -4 -3 0 

X 2 2 0 0 

fq. 36 16 20 28 
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(such as GA) for PSP, has been reviewed in the context of a twin removal within 
population, intelligent encoding for problem presentation, so on, which become 
indispensable for providing further effectiveness. Domain knowledge based heu-
ristics are shown very useful. Moreover, in the modelling point of view, simplified 
model can be made further effective by preferring a lattice orientation, beads and 
contact potential that can map real folded protein closely possible.  
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