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ABSTRACT

Proteins are three-dimensional structures that carry out
many of the vital biological functions in organisms. Be-
cause structure, not amino acid sequence order, carry out
certain functions, it is important to understand how pro-
teins fold. Computational methods for protein structure
prediction mentioned in the literature are computationally
demanding. To reduce computational demand fragment li-
braries were introduced. Fragment libraries work by taking
short segments of the polypeptide chain and limiting the
amount of conformations that will be considered for a par-
ticular segment. In this paper an extensive analysis towards
finding the optimal length of fragments contained within
fragment libraries was conducted. An extensive analysis
was done on protein structures stored in a ORDBMS to
exploit its power. Experiments focused on the structural
similarity between fragments of identical primary protein
sub-sequence within different proteins, and amount of oc-
currences of similar or closely similar fragments within dif-
ferent proteins. Experimental results indicate that short to
medium sized fragments have stronger structural correla-
tions with matching fragments within different proteins.

KEY WORDS
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Prediction.

1 Introduction

Proteins are three-dimensional structures. They carry out
many of the vital biological functions in organisms. Due to
this, there is a need to understand how proteins fold into
their final three-dimensional structures and interact with
one another. Computational methods that have been de-
veloped to solve this problem are comparative modelling,
threading, and ab initio.

Comparative modelling and threading can produce in-
accurate models, and ab initio is very computationally de-
manding. To solve this problem fragment libraries were
developed.

The idea of being able to successfully predict a pro-
teins three-dimensional structure is a mystery that has baf-
fled scientists for many years. The reason why a solution
to the protein folding problem has been heavily sought af-
ter is due to their importance. Proteins carry out all of the
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main functionality within an organism on a cellular level.
For example, red blood cells contain a protein known as
the hemoglobin. This protein carries out the functionality
of carrying oxygen to the blood stream.

A byproduct of proteins carrying out vital biological
functions is that if certain proteins do not fold correctly
then numerous diseases may present themselves. These in-
clude: Alzheimers Disease, Cystic Fibrosis, and numerous
prion diseases [5]. By knowing how a protein folds into its
unique three-dimensional structure we would have a better
understanding of why these proteins are not folding prop-
erly, and hence would be able to do something about it. An-
other benefit of being able to predict the three-dimensional
structures of proteins is the ability to use that technology to
design proteins that will carry out a specific biological task
[4]. By doing this scientists will have the ability to cure or
prevent human diseases/ilnesses by using these specifically
designed proteins.

To improve the quality of protein structure predic-
tion numerous computational methods have been proposed.
Computational protein structure prediction methods can be
grouped into the following categories: comparative mod-
elling, threading, and ab initio.

Comparative modelling and threading both have
problems if the sequence similarity is low. However, ab
initio predicts a structure from the proteins sequence alone,
hence it does not require template sequence information
like the other two methods. The main limitation of the
ab initio approach is the high computational cost. To min-
imise this problem fragment libraries have been introduced,
which are used to limit the amount of conformations con-
sidered for a particular segment of the protein chain.

In this paper we have conducted an extensive analy-
sis of the structural similarity between various sized match-
ing fragments within different proteins, to elicit the optimal
fragment size for use within fragment based protein predic-
tion software. This was to investigate how fragment length
could improve/decrease the accuracy of the protein struc-
ture prediction process.

The reminder of this paper is organized as follows:
in Section 2 we present background information, Section
3 discusses the methodology we implemented, Section 4
presents and discusses our experimental results, and in Sec-
tion 5 we conclude our findings and mention possible future
work.
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2 Background

A protein is made up of a collection of amino acids, which
are molecules that have both carboxyl and amino groups.
An amino acid contains a carbon atom (Cc«), and has four
different connections, these include an amino group, car-
boxyl group, a hydrogen atom, and a side chain (this differs
depending on the amino acid). The Ca atom is the central
atom of the amino acid and all of the other connectors are
attached to it. The Ca atom is important as it is the central
atom in every amino acid and has a great deal of impact on
the backbone conformation of a protein [6].

Proteins can take on an enumerable amount of con-
formations. Even for the simplified assumption [1] that
if each amino acid can have 3 degrees of rotation, a pro-
tein chain that has 200 residues could at the very minimum
have 32°0 possible conformations, which is an astronomical
number. Hence, it is very hard to predict a proteins three-
dimensional structure by searching all possible structures
available. To alleviate this problem 3 main computational
methods to predict a proteins structure have been devel-
oped, these are: comparative modelling, threading, and ab
initio.

Comparative modelling and threading work by align-
ing a protein’s target sequence with one or more template
sequences. Ab initio on the other hand is based off of the
principle that a proteins native structure is at its lowest free
energy minimum [2]. This means instead of using tem-
plate sequences, it predicts a proteins structure based off of
its sequence alone by searching the free energy conforma-
tional space. The major flaw with this methodology is that
the conformational space is too large. To solve the heavy
computational problem fragment libraries were introduced.

Fragment libraries are utilised within protein struc-
ture prediction to limit the amount of possible conforma-
tions considered for a given protein. They are either: local
structure motifs or three-dimensional structure motifs [11].

Local structure motifs refer to one or more secondary
structures joined together, and three-dimensional structure
motifs are fully conformed protein structures [11]. Sec-
ondary structures can be either a alpha helix, or a pleated
beta sheet, and are structures created by hydrogen bonding
when the protein chain begins to fold. Therefore, it can be
seen that a fully conformed protein is made up of numer-
ous local sequence motifs. The state-of-the-art protein pre-
diction software currently available at the moment mainly
use local structure motifs for their predictions, because us-
ing fully conformed proteins would drastically increase the
CPU time.

Fragment based protein structure prediction software,
like Rosetta [7] [8] and Tasser [9] [10] do not allow for
their fragment length to be changed, and therefore there is
no way of proving the quality of the fragment being used.
It can be perceived that increasing/decreasing the fragment
length could greatly improve the accuracy of the predic-
tion process, which is still far off being perfect. There also
has been no real investigation into the structural similar-
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ity between identical fragments within different proteins to
determine what the optimal fragment length could be. In-
stead, the research in structural similarity has been heavily
focused on devising ways to quickly match sub-structures
of any size within different proteins [6] [11], rather then
focusing on the fragment length.

3 Fragment Similarity Prediction

To find the optimal length of fragments to be used within
fragment based protein prediction software we have carried
out an investigation into protein fragment similarity. This
incorporated taking already folded proteins from the PDB
(Protein Data Bank) and checking how often particular mo-
tifs/fragments of a set size within each protein in the pro-
tein database matched with every other protein sequence
contained within the database.

For example, if one of the motifs contained the amino
acids alanine, threonine, and glycine (ATG) right after one
another. ATG would be searched for throughout every pro-
tein sequence in the database and every occurrence of it
that appeared in the exact same order (i.e. A as the first
amino acid in the motif, T as the second amino acid in the
motif, and G as the third amino acid in the motif) would
be recorded and analysed. Other than recording matches
the distance between the amino acids (i.e. between the Ca
atoms) of the motif/fragment were also stored to determine
how structurally similar identical fragments are within dif-
ferent proteins.

To conduct this analysis we took advantage of the
powerful ORDBMS (Object Relational Database Manage-
ment System) engine. All protein data was converted into
a suitable format, and stored within a Oracle 10g data-
base. This database contained a pdb table to store all of
the protein data, a match table that contained all matching
fragments and their Root Mean Squared Distance (RMSD)
value, and a report table that contained a summary of all
matching fragments, which included the number of occur-
rences of a particular fragment, and the minimum and max-
imum RMSD values for that fragment. The RMSD equa-
tion is used to determine how structurally similar identical
fragments (the same sequence of amino acids) are within
different proteins [3]. It does this by measuring the dis-
tances between the Ca atoms of each amino acid within
the fragment (see equation 1). We used the root mean
squared distance equation rather than other statistical struc-
tural measures (e.g. root mean squared deviation) due to it
being less costly to calculate, and due to it producing close-
enough structural similarity values.

VB -1 +2)

rmsd =



3.1 Fragment Similarity Algorithm

The algorithm that we used for the protein fragment search
can be found in Algorithm 1. This algorithm works by
first grabbing all of the proteins within the database (pro-
tAll). It will then iterate throughout all of protAll so that
all proteins within the database are searched. The main
body introduces two fragments A and B. A is a protein
fragment of size k (where k > 4) that starts from the
amino acid of a particular protein that protAll is currently
on (curr) and ends k-1 amino acids past curr (i.e. A = pro-
tAll.currentAcidID to protAll.currentAcidID + k-1). B on
the other hand holds many different fragments depending
on the first amino acid in A.

Algorithm 1 Fragment Similarity Algorithm

protAll = get all proteins in the database;
while protAll NOT NULL do

if protAll.prot.name != previous.protAll.prot_name
then

Mark previous.protAll.prot_name AS DONE,;
end if

A() = fragment of protein from proteinAll.acidID to
proteinAll.acidID +k - 1;
dist = RMSD for A(1) to A(3);
Add A(1) ... A(3) dist to match, report;
protAcid = All amino acids within all proteins that
contain A(1).acid_name;
while protAcid is NOT NULL do
B() = fragment of protein from protAcid.acidID to
protAcid.acidID + k - 1;
if A(2).acid_name = B(2).acid_name then
if A(3).acid_name = B(3).acid_name then
dist = RMSD for B(1) to B(3);
Add B(1) ... B(3) & dist into match, report;
if A(4).acid_name = B(4).acid_name then
dist = RMSD for A(1) to A(4);
Add A(1) ... A(4) & dist into match, report;
dist = RMSD for B(1) to B(4);
Add B(1) ... B(4) & dist into match, report;
end if
Keep checking up to A(k) to B(k);
end if
end if
end while
end while
Mark last protein AS DONE;

B is assigned by finding every protein and the related
amino acid positions in the database that have the same
amino acid as the first acid in A (protAcid). protAcid is
then iterated through and each time B is assigned the frag-
ment, k in length (where k > 4), generated by protAcids
current amino acid for a particular protein (curr) up to k-
1 amino acids past curr (i.e. B = protAcid.currentAcidID
to protAcid.currentAcidID + k-1). After A and B are both
found it is then a simple matter of checking if the amino
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Figure 1. The average difference between minimum and
maximum RMSD for each fragment length

acid of A at position two matches B’s amino acid at po-
sition two and then same for position three. If this is the
case then root mean squared distance for B is calculated
and recorded in database. The same is done for 4, 5, 6, 7..k
fragments in length, but there is one slight difference. Due
to the algorithm automatically adding A 3 sized fragments
to the database as a default, there is a need to calculate the
root mean squared distance for A 4, 5, 6, 7...k sized frag-
ment matches and add them to the match and report tables
before calculating the RMSD value for B.

4 Experimental Evaluation

The fragment analysis, mentioned in the previous section,
was performed on a protein database, which contained
protein structures stored within the PDB (approximately
24000 structures). We included proteins from PDB that
contained single chain only. There are proteins that have
amino acids, which are made up of more then one Ca
atom, and therefore were not suitable for our testing be-
cause RMSD values can not be calculated properly for frag-
ments that have amino acids with more than one Ca atom.

All experimental results presented in this section are
computed on a Sun Fire V880 server with 8 x UltraSPARC-
IIT 900MHZ CPU using 8GB RAM, running Oracle 10g
RDBMS. The Database block size was 8K, SGA (System
Global Area) size was 1GB, and fragment lengths 3-12
were considered.

Our goal within this experimentation stage was to find
out what the most appropriate fragment length should be
within fragment based protein predictions software (e.g.
Rosetta). To achieve this after the results for the frag-
ment similarity analysis were produced, we ran a second
experiment to determine the optimal fragment size/s to be
used in Rosetta. This was done by changing the fragment
size within Rosetta in place of its already existing 9 sized
local-sequence motifs that it uses for backbone protein pre-
dictions. Each fragment length that was used within the
fragment similarity analysis was tested with this modified
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Figure 2. Number of occurrences of RMSD for the max
occurring fragment of length 3

Rosetta. By doing this we are able to see which one of these
lengths produce more accurate predictions, so that we can
determine the optimal fragment size. In order to determine
optimal fragment length we modified Rosetta’s fragment
generation functionality to allow different sized fragments
to be generated and we also modified the program itself so
that different sized fragments could be used for structure
prediction.

4.1 Results

In Figure 1 are shown the average difference between
the minimum and maximum root mean squared distance
(RMSD) values for a particular fragment length (the x axis
is the fragment size, and the y axis is the RMSD value).
In Table 1 we present the maximum occurring fragments
for a set length (i.e 3-12). The fragment name in Table
1 refers to the amino acids that make up that fragment,
these are written in the three-letter notation. For example,
ALAALAALA refers to a fragment composed of the amino
acids alanine, alanine, and alanine. In Figures 2, 3, 4, 5 and
6 are results for the number of occurrences of RMSD val-
ues for these max occurring fragments for sizes 3-12. The x
axis shows the RMSD value, and the y axis shows the num-
ber of occurrences for that RMSD value. In table 2 is the
analysed results from these graphs, it shows the percent-
age of overall data that falls within the bell curve (i.e. oc-
currences of identical fragments within different proteins),
and the differences between the maximum and minimum
ranges of that bell curve.

In Table 3 are the results of running the different frag-
ment sizes through the modified version of Rosetta. It con-
tains the CPU time (hh:mm:ss) required to complete 100
decoys (note that everything was rounded up to minutes)
for the BAX protein (1f16) for a particular fragment size,
and the maximum and minimum scores for each fragment
size.
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Figure 3. Number of occurrences of RMSD for the max
occurring fragment of length 5
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Figure 4. Number of occurrences of RMSD for the max
occurring fragment of length 9
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Figure 5. Number of occurrences of RMSD for the max
occurring fragment of length 11



Fragment Size | Fragment Name Occurrences | Min RMSD | Max RMSD
3 ALAALAALA 4452 4.161 7.328
4 GLYSERSERGLY 657 4.2 6.692
5 LEUASPALAVALARG 393 4.748 6.692
6 VALASPALAALAVALARG 334 5.148 5.575
7 GLYILEGLYHISLEULEUTHR 331 5.764 9.896
8 GLYILEGLYHISLEULEUTHRLYS 330 9.035 10.901
9 ASPGLUALAGLULYSLEUPHEASNGLN 329 6.544 6.872
10 ASPGLUALAGLULYSLEUPHEASNGLNASP 329 7.07 7.583
11 ASPGLUALAGLULYSLEUPHEASNGLNASPVAL 329 7.609 7911
12 LYSASPGLUALAGLULYSLEUPHEASNGLNASPVAL | 328 8.162 8.839
Table 1. Max occurring fragments used

Fragment Size | CPU Time | Max Score | Min Score

3 5:23:00 26.63 -98.4

4 5:46:00 14.04 -104.07
45 5 5:50:00 -2.26 -101.67
40 /A\ 6 6:13:00 0.97 -98.27
35 / W 7 2:13:00 -8.35 —97.0é
30 8 :25:00 -3.25 -111.68
25 /\/ \ 9 6:34:00 -28.47 -116.04
20 / 10 6:38:00 -27.8 -106.49
15 \ 11 6:38:00 -16.19 -108.17
10 /_/ \ 12 6:50:00 -25.15 -105.77

2 [ S Table 3. Accuracy verses CPU Time for different fragment
‘%q} ‘%q; ‘ q;; ‘ ,5‘1, PP ‘%b?‘) o sizes within Rosetta

Figure 6. Number of occurrences of RMSD for the max
occurring fragment of length 12

Frag.Size | Frag. within Bell Curve | RMSD diff.
3 82.21% 0.34
4 88.49% 0.18
5 78.86% 0.53
6 94.91% 0.15
7 95.77% 0.19
8 96.06% 0.20
9 98.77% 0.13
10 97.87% 0.14
11 100% 0.16
12 99.69% 0.16

Table 2. Percentage of data held within bell curve
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4.2 Analysis and Discussion

In our results we looked at the number of occurrences of
root mean squared distance (RMSD) for the maximum oc-
curring fragment for each fragment length (see table 1 to
see which fragments we used for the maximum occurring
fragment for a particular length, and see figures 2, 3, 4,
5, and 6). This sort of data shows us the spread of data be-
tween the max occurring RMSD value (the maximum point
in the graph) for each maximum occurring fragment for a
particular length. The higher the percentage of data that
is contained within the bell curve (the data points that fall
before and after the maximum RMSD point) demonstrates
that the majority of occurrences of RMSD for a particu-
lar fragment length is appearing within a set RMSD range.
The smaller the difference between the minimum and max-
imum values of this RMSD range is, the more structurally
similar identical fragments within different proteins are
(i.e. for that maximum occurring fragment k in length).

In regards to the number of occurrences of RMSD for
the maximum occurring fragment, the obvious conclusion
to make is that sizes 3, 4 and 5 (compared with all other
fragment sizes) all have, on average, lower structural simi-
larity with identical fragments within different proteins and
less occurrences held within a set RMSD range (i.e. bell



curve). This is further proven by Figure 1. This figure
depicts the average difference between minimum and max-
imum RMSD values, for all matched fragments within dif-
ferent proteins for a particular length. This means it gives
us a good indication of how structurally similar identical
fragments (i.e. matched fragments) of a certain length are
within different proteins.

In concerns to accuracy it seems that the longer the
fragment (> 8 residues) the lower the Rosetta score range
is (see table 3). For our purposes here we have decided to
base our analysis for accuracy on the overall score Rosetta
gives to each decoy it generates. This is the score given
by the energy function that Rosetta uses, and the lower the
score is the closer it is considered to be to its native struc-
ture. As you can see in table 3, fragments from length 8
and up have smaller maximum scores and very low min-
imum scores. This means that they generate more struc-
tures that have low scores and thus are closer to their na-
tive structures. Therefore, from this we can conclude that
short-medium fragment lengths used for the main back-
bone predictions, in Rosetta, produce more accurate results
then smaller sized fragments.

Fragment sizes 3, 4, and 5 were not suitable, even
though more matches of these fragment lengths were found
within different proteins. This was due to them all having
high structural differences from identical fragments within
different proteins. Fragment sizes 6, 7 and 8 all had rea-
sonable structural difference tolerance, but still, like the
other fragment lengths, had too high of a score range within
Rosetta. That left us with sizes 9, 10, 11 and 12, which
all had reasonable structural difference tolerance (on av-
erage and within their max occurring fragment). There-
fore, we concluded that short-medium sized fragments are
more optimal for fragment based software due to them be-
ing more structurally similar to matching fragments within
other proteins. Overall we found that fragment size 9 per-
formed better then other fragments within Rosetta (lowest
score range), and is concluded to be the optimal fragment
size for use within Rosetta.

5 Conclusion and Future Work

In this work in extensive experimental study we addressed
a question of finding the optimal size of fragments to be
used within fragment based protein structure prediction
software. The most significant results we discovered was
that fragment sizes 6-12 were more structurally similar than
compared with smaller fragment sizes (e.g. 3-5). And this
lead to us finding out that sizes 9-12 sized (short-medium)
fragments produced lower score ranges within Rosetta, and
the optimal size for Rosetta (out of 3-12 fragment lengths)
being 9. This computationally shows that the longer frag-
ment sizes produce more accurate results due to identical
fragments within different proteins being more structurally
similar.

As for future work it would be interesting to inves-
tigate how different biological forces impact on match-
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ing fragments structural similarity within different pro-
teins, and use findings to modify the fragment generation
process.

Acknowledgement

This research is partly sponsored by ARC (Australian Re-
search Council) grant no DP0557303.

References

[1] D. Baker. Proteins by design. The Scientist, pages
26-32, July 2006.

[2] D. Baker and A. Sali. Protein structure prediction
and structural genomics. SCIENCE, 294:93-96, Oct.
2001.

[3] O. Carugo. Statistical validation of the rootmean-
squaredistance, a measure of protein structural prox-
imity. Protein Engineering, Design and Selection,
20(1):3338, 2007.

[4] N. C. et al. Biology. Benjamin Cummings, ISBN:
080537146X, 2004.

[5] Feng Ding, Joshua J. LaRocque, and Nikolay V.
Dokholyan . Direct Observation of Protein Fold-
ing, Aggregation, and a Prion-like Conformational
Conversion. The Journal of Biological Chemistry,
280(48):40235-40240, 2005.

[6] Z. Huang and X. Zhou. High dimensional indexing
for protein structure matching using bowties. In Pro-
cedings of the 3rd Asia-Pacific Bioinformatics Con-
ference, pages 21-30, 2005.

[7] K.T. Simons, C. Kooperberg, E. Huang, and D. Baker.
Assembly of protein tertiary structures from frag-
ments with similar local sequences using simulated
annealing and bayesian scoring functions. Journal of
Molecular Biology, 268:209-225, 1997.

[8] S. KT and B. Ruczinski and I. Baker. Ab initio pro-
tein structure prediction of CASP III targets using
ROSETTA. Proteins, pages 171-176, 1999.

[9] Y. Zhang and J. Skolnick. Automated structure pre-
diction of weakly homologous proteins on a genomic
scale. PNAS, 101(20):7594-7599, May 2004.

[10] Y. Zhang and J. Skolnick. Tertiary structure predic-
tions on a comprehensive benchmark of medium to
large size proteins. Biophysical Journal, 87:2647—

2655, Oct. 2004.

[11] Zi Huang and Xiaofang Zhou and Dawei Song and
Peter Bruza. Dimensionality reduction in patch- sig-
nature based protein structure matching. In Proced-
ings of the 17th Australiasian Database Conference -

ADCO06, pages 89-97, 2006.





