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Summary: Protein folding prediction (PFP), especially the ab initio ap-
proach, is one of the most challenging problems facing the bioinformatics
research community due to it being extremely complex to solve and com-
putationally very intensive. Hybrid evolutionary computing techniques have
assumed considerable importance in attempting to overcome these challenges
and so this chapter explores some of these PFP issues. By using the well-
known Hydrophobic- Hydrophilic (HP) model, the performance of a number
of contemporary non-deterministic search techniques are examined. Particu-
lar emphasis is given to the new Hybrid Genetic Algorithm (HGA) approach,
which is shown to provide a number of performance benefits for PFP appli-
cations.

1 Introduction

The technological advancements taking place in various sectors are contribut-
ing in a major way to address complex problems by sharing and exchang-
ing advanced knowledge from various disciplines. Protein folding prediction
(PFP) represents one such difficult, yet important challenge that has strong
cross-disciplinary involvement such as molecular biology, biophysics, compu-
tational biology and computer science. If the mysteries of protein folding are
to be unravelled, it will not only assist in combating many diseases, but it
will also mean that various crucial medical, agricultural and biotechnological
bottlenecks that currently exist, can be either fully or partially alleviated.
PFP has so far proven to be an intractable problem to solve within the
various disciplines involved. Proteins typically exhibit some pattern in their
folding, which is not random, thus the mystery can be explained to some
extent, through logical inferences. From this perspective, the field of compu-
tational biology appears promising as it providing the support necessary to
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facilitate PFP solution, which is a combinatorial hard optimization problem.
PFP research provides the opportunity, therefore to establish the significance
of a particular methodological approach like hybrid evolutionary computation,
which has been applied to solve many real-world problems due to its consis-
tently superior performance [35, 39, 49, 62, 71, 74].

2 Background: The Protein Folding

Proteins are the most important molecules in living organisms both quantita-
tively as well as functionally. More than half of the dry weight of a cell is made
up of proteins, which exist in various shapes and sizes. Proteins are responsible
for transporting small molecules such as the hemoglobin that transports oxy-
gen in the bloodstream, catalyzing biological functions and providing structure
to collagen and skin, control sense, regulating hormones, process emotion and
many other functions [54]. The really exciting information concerning proteins
is not about the molecules carrying out vital tasks, but their various shapes
which enable them to perform the tasks. Furthermore, proteins are sequences
of amino acids bound into a linear chain that adopt a specific folded three-
dimensional (3-D) shape, which implies to carry out their task, proteins must
fold into a 3-D structure [26] from the amino acid sequence.

This is why the understanding as to how protein sequences actually deter-
mine their structures has often been referred to as the second half of genetics
[19]. Prof. Pande of Stanford University [37] mentioned that “... just about
anything that needs to get done in biology is done by a protein, when you
have a machine on this tiny scale, how is it built? When you are dealing with
something on an atomic scale, you do not have atomic-sized hammers and
screwdrivers. What biology has done is create machines that can assemble
themselves. The process of self-assembly they go through is called folding”. In
order to explore more deeply in this matter, we will now examine the con-
stituents of a protein.

2.1 Inner Structure of Proteins

The sequence of amino acids in any protein defines its primary structure [9].
There are only 20 different amino acids and their various sequential com-
binations lead to the formation of different proteins. Any two amino acids
will have a number of common parts, such as a central carbon (C,) which is
bonded with a hydrogen (-H), an amino group (—NHy), and a carboxyl group
(-COOH). They differ between themselves only by the variation of their side
chains, represented in general by the symbol “R” (Fig. 1(a)). C, is also always
bonded with carbon (called Cg) of the side chain with the exception of one
of the amino acid called Glycine, having one hydrogen atom as the side chain
instead. Fig. 1(b) shows the ionized form in the aqueous solution, where the
amino group are protonated to make ammonium ions and the carboxylic acids
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are ionized to their conjugate bases (carboxylate ions), which helps the two
amino acid to be concatenated. Any two amino acids that are concatenated,
release water and form peptide bonds as shown in Fig. 2.

From the remarkable investigation (for which he won the Nobel Prize for
Chemistry in 1972), Anfinsen [5] concluded that the information determining
the tertiary structure of a protein resides in the chemistry of its amino acid
sequence, a finding that is now known as Anfinsen’s thermodynamic hypothe-
sis. A protein can be denatured (i.e. have forced folding deformity) by either
adding certain chemicals or by applying heat. It has been experimentally
verified that after removing the denaturing chemical or heat, proteins sponta-
neously refold to their native forms. Refolding experiments indicate that the
unique native conformation does not depend on the initial state of the chain
and is sufficiently stable to be independent of a variety of external factors.
The global minimum claim (i.e. the aforementioned thermodynamic hypoth-
esis) is supported by the fact that proteins are not experimentally observed
to be in different conformations. Each protein appears to have a single native
conformation so in almost all cases it is assumed [48] that when predicting a
polypeptide (such as protein) structure, the native conformation corresponds
to the global minimum free energy state of the system.
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Fig. 1. (a) An amino acid showing bond structure in general. (b) Amino acid at
pH 7.0.
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Fig. 2. Two amino acids connected by forming peptide bond and releasing water.
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2.2 The Search Problem

Peptide bond helps to form the amide plane (Fig. 3) between two amino acids
and to join them together. Connected this way a number of amino acids form a
sequence, called the polypeptide chain, with this linear sequence of residues be-
ing known as its primary structure. Proteins actually fold in three dimensions
presenting secondary, tertiary and quaternary structures [59]. The secondary
structure of a protein is formed through interactions between backbone atoms
only and results in local structures such as a-helix, 5-sheet and so on. Tertiary
structures are the result of secondary structure packing on a more global level
and a further level of packing is basically a group of different proteins packed
together in what is known as quaternary structures. Further details on all
these various structures is not presented here, but for the interested reader,
additional information can be found in [27].
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Fig. 3. Constituents of the amide plane and corresponding degrees of freedom. N-
Ca, Co-C and N-C bonds are respectively represented by torsion angle ¢, ¥ and w.
The side chain torsion angle is shown by .

The main chain has two degrees of freedom around the dihedral angles,
¢ and ¢ (Fig. 3), while the side chains have an additional degree of freedom
around their torsion angles x as the example in Fig. 4 illustrates. Assuming
there are two such x on an average per amino acid and each angle approx-
imately has degree of freedom of ~ 2w, then the total number of possible
conformations can be expressed as:

CTot ~ (Xl * XQ * X3 * X4)m (1)
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Here, m is the number of amino acids in the sequence and X, X5, X3
and X, indicate the permissible degrees of freedom of angles ¢, v, x1 and x»
respectively. It is clear from the relationship in (1) that the total number of
possible conformations is exorbitant. Due to sterical (i.e. spatial arrangement
of atoms in a molecule) disallowances, some reduction in this number is feasible
using what is commonly referred to as the Ramachandran plot [9], though the
number remains inordinate. Even if a small degree of freedom is assigned,
with say each amino acid having only 3 degrees of freedom (¢, ¥, x) and if
we further assign each free angle just 3 different arbitrary values, then for a
100 residues long protein, the total number of conformations is 33°°, of which
only one will be the native state. In terms of computational time overheads,
assuming 100 conformations per second can be sampled then this results in
requiring a totally unrealistic ~ 4.34'33 years in order to explore all possible
conformations.
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Fig. 4. Possible torsion angles (x;), for side chains (shown in bold lettering) for
three amino acids, namely (a) Glutamine (b) Lysine (¢) Methionine.

In nature, a protein folds remarkably quickly, requiring between a tenth
of a millisecond and one second in general, whereas any algorithm [70, 71] on
any modern computer is unable to yet exactly simulate this task, which take
just a fraction of a second to perform it in nature. As Pande [37] perceptively
noted “...to simulate the very smallest, fastest protein folding right now on a
fast workstation would probably take about 30 years.” 1t is therefore currently
not known how exactly an amino acid chain folds into its tertiary structure
in the short time scale that occurs in the cell. Cyrus Levinthal postulated,
in what is popularly known as the Levinthal Paradozx, that proteins fold into
their specific 3-D conformations in a time-span far shorter than it would be
possible for the molecule to actually search the entire conformational space
for the lowest energy state. It has been argued that the paradox can be settled
if one views each atom as independently computing in its neighborhood, i.e.,
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the atoms compute in parallel whereas the theoretical calculation assumes
a sequential search [16]. As proteins cannot while folding sample all possi-
ble conformations, so folding is therefore not a random process and a folding
pathway must exist. Additional to the astronomical number of possible con-
formations, there are certain forces [42] like the hydrophobic force, hydrogen
bonding, electrostatic force, Van der Waals interactions, disulphate bridge and
solvation to name just a few, that ultimately determine the final 3D confor-
mation. Thus, the native conformation prediction process from the amino acid
sequence essentially involves both the structural details of the constituents as
well as the aforementioned forces regarded as energy functions or fitness func-
tion in a model. The complicated form of the energy function does not readily
suggest any obvious efficient search strategy, with most searches becoming
trapped in one of the numerous local free energy minima characteristic of
the energy landscape. PFP therefore represents one of the most challenging
contemporary combinatorial hard optimization problems.

2.3 Importance of the Protein Folding

Protein Drug

-
Re

S
&
Before Binding After Binding

Fig. 5. Ligand binding mechanism used in drug designing; structural information
is required to form the protein vs. drug binding.

Protein mis-folding [56] has been identified as the cause of about 20 dis-
eases [37], including for example mad cow, cystic fibrosis, Alzheimer’s and
Parkinson’s. The diseases are thought to occur in many ways, for example
just one amino acid mistake in the hemoglobin that carries oxygen through
the blood, leads to sickle cell anemia. Since the function of a protein is de-
termined to a large extent by its structure, protein folding prediction appears
to be the key to progress [2, 71] in many medical applications such as drug
design (Fig. 5). A vital element to drug design [53] is that proteins func-
tion by docking, [18] where docking receptors (proteins) contain pockets to
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bind to the ligand (drug). Same pathway searching methodologies of PFP
are useful for finding the position and orientation of the two molecules being
energetically minimized, so that PFP can be very helpful in designing and
synthesizing drugs as well as in applications related to areas like agriculture
and biotechnology.

2.4 Available Prediction Technologies

Due to the huge number of possible conformations generated from the amino
acid sequences, systematic exhaustive searching is impracticable [55]. To anal-
yse the protein structure in practice, X-ray crystallography (XC) and nuclear
magnetic resonance spectroscopy (NMR) are used [55, 77]. In the former, the
protein must be crystallized before applying X-rays for structure determi-
nation, though crystallization may take days, or even months or years. Still
many proteins, especially those that are attached to the cell membrane cannot
be crystallized. For the process of XC for prediction, it is not only needs to
apply X-rays onto the crystal, but it also requires expertise including elabo-
rate calculations and translation of the received deflection pattern in various
position of the crystal. Conversely, the principle behind NMR is that some
atomic nuclei such as hydrogen are intrinsically magnetic and upon applica-
tion of magnetic field they can adopt different energies. NMR avoids the need
of crystallized protein and so is faster than XC, but for longer proteins, NMR
results become less precise. Both, XC' and NMR are however labor and time
[26] intensive and are inadequate for the increased demand mandated by PFP.
This has led a raft of computational approaches being proposed in an attempt
to solve the PFP problem.

3 Computational Approaches

The application of the computational techniques to PFP, assists considerably
to reduce the labor and time complexity burden for a variety of reasons. The
prediction process using computational methods can be broadly divided into
three classes [65], namely homology modeling , threading and ab initio or, de
novo folding. The basis of homology modeling is that the proteins with sim-
ilar sequences tend to fold into similar structures. The key challenge here is
to perform the best alignment with the template, with the full conformation
being built afterwards by the best placement of the side chain. The goal of
protein structure prediction by threading [40] is to align a protein sequence
correctly to a structural model. Threading requires choosing both the com-
patible structural model from a library of models and the alignment from
the space of possible sequence-structure alignments. The alignment helps side
chain packing and other substructure from the library to help build the pri-
mary mapping between sequences versus structure in the model and finally
the full-atom model is formed. Both homology modeling and protein threading
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have the intrinsic disadvantage that a solved solution for a related structure
must exist. In contrast, ab initio prediction seeks conformations based solely
on the sequence information and optimized energy or fitness function that
measures the goodness of a conformation. This approach is based on Anfin-
sen’s aforementioned thermodynamic hypothesis, such that the final or native
conformation of the corresponding sequence is thermodynamically stable and
is located at the global free energy minimum [78]. In considering these three
categories, protein threading can be viewed as an intermediate technique be-
tween homology modeling and ab initio prediction.

While ab initio prediction is computationally intensive, the potential it
affords in terms of accuracy and usability are high in a PFP context. It en-
ables the adding or removing of functions in existing proteins to change their
structure and is able to synthesize new proteins to obtain desired functions
(i.e. inverse prediction), with no need to have a template or dataset available
from proteins that have been explored previously for the ab initio approach.
Moreover, dataset or template does not guarantee the prediction of either a
non-relevant or an entirely new structure.

3.1 Molecular Dynamics

In principle, computation based on molecular dynamics(MD) [20, 61, 66] is
the ideal option and most realistic way to obtain the minimal energy confor-
mation from the collaborative motion and energy of the molecules in a protein
sequence. Its basis is Newton’s second law of motion, expressed as:

A2z dV

" @)

F =ma=

where, dV = change of Velocity i.e. the potential energy, dr = change of
position, F' = Force, m = mass, a = acceleration and ¢t = time. The motion
of atoms in a molecule and their potential energy (E7,:) is the measure for
determining the condition of any state. The potential energy can be divided
into bonded and non-bonded and can be expressed by the following set of
equations:

ETot - Ebonded + Enonfbonded (3)
Ebonbed = Ebond—stretch + Eangle—bond + Ebond—rotate (4)

Enonfbonded = EVande'rfWaals + Eelectrostatic (5)
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Equation (4) measures the most significant potential energies of the
bonded atoms in the form, where a bond can either be stretched like spring
or, angular bending occurs and the rotational energy of the two bonded atoms
toward the connecting axis. Equation (5) measures the major energy interac-
tion amongst those atoms that are not bonded, such as Van der Waals and
electrostatic forces. Based on the side chain (“R”) property, one of the most
dominant forces is hydrophobic (also known as water-hating) at the composite
level with respect to a solvent. This works on some amino acids helping to form
the protein core. Conversely, hydrophilic (also known as water-loving) force
works on some other amino acids makes them more attractive to a solvent.
This leads to the important phenomenon known as hydrophobicity. Further,
hydrogen bonding, disulfide bridge and so on, try to influence the native con-
formation in their favour.

MD simulates the movements of each atom in the protein and in the
surrounding water molecules as a function of time. The system is given an
initial thermal energy and atoms are allowed to move according to the rules
of classical mechanics. The energy of a conformation (using an empirical en-
ergy function) is differentiated to obtain the force, acceleration and velocity of
each atom, which is clearly very computationally expensive and requires the
fastest possible super-computer, with IBM’s blue gene [1, 2] project being one
approach [3, 24, 64]. With enormous peta-flop computing capability, (10*°
floating point operation per second), simulation of 100us of actual protein
folding time is estimated to be taking about three years. In order to make the
movement realistic, atoms can move only for a very short period of time (typ-
ically (10715 seconds) before the energy of the system must be re-calculated.
Folding time of approximately 10~% seconds require 10'* MD time steps, so
clearly the computational power is still many orders of magnitude below with
respect to what is required to model the real folding process. However, the
very short time period for which the current simulations can be run does not
allow direct confirmation for their ability to converge [71] to the native con-
formation from a significantly different starting state, so to achieve the very
ambitious goal, blue gene cannot go it alone; it is essential to collaborate with
the broader research communities [2, 51] to achieve this advancement.

3.2 Model Based Approaches

A near real but complicated approach such as MD is infeasible because the
computation time is asymptotic in nature, so there is still a very long way to
go to unravel the complex folding mechanism. Philosophically, this mandates
a more bottom-up strategy, which attempts to model the prediction using
simplified low-resolution paradigms, before extending it to increasingly high-
resolution models to achieve evermore realistic prediction. A robust theoretical
framework can be raised in the manner of building blocks. To endeavor this
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mysterious probe, various levels of models with various resolution are used
[19], which is presented chronologically in Fig. 6.

The most simplified model is the lattice model. The lattice can be of sev-
eral regular structures such as square or cubic, triangular or face-centered-cube
(FCC) [6], with dimension 2 to 3. There are 14 regular 3D lattice commonly
available, called Bravais Lattices in general. With the next level of complex-
ity, the off-lattice (also known as beaded string) [2] model, adds more degree
of freedom by relaxing the lattice restrictions. Both the model are used for
approximation of the protein’s backbone conformation. An amino acid is ap-
proximated as a residue or a node in both the models. Since the side-chains
are encountered and treated as wunited atom with the core residue (non “R”
part) in the above mentioned simplified models, these are also referred as a
united atom model. These models are extremely useful since initial exhaus-
tive investigation is feasible to some extent using these simplified models and
computational time remains reasonable [31, 32]. Hence, these models are use-
ful as being effective test-bed for the application and the advancement of the
computational intelligence techniques. At the next level of complexity, side
chain is considered individually and fully apart from being united with the
core residue, introducing additional degree of freedom due to the side chain
torsion angles . The presence of the solvent is also sometimes considered.
Next, the all-atom model considers all the atoms including solvent atoms, all
the forces and facts are encountered and the whole approach goes from low
resolution to high resolution. Finally, the finest possible model is the quan-
tum mechanical (QM) which quantifies the protein from extreme fine to the
quantum level. The QM model may be perceived as impossible without the
underpinning chronological development of the effective and efficient strate-
gies and theories having been exercised well and derived from the simpler
models. Simplified models are thus of immense importance and are applied to
aid the understanding of the folding mechanism [17], allow efficient sampling
of conformational space and play a key role in advancing the rigorous theo-
retical basis and methodologies. When designed properly, the model can give
a well-defined global energy minimum that can be calculated analytically.
Therefore, in this context we shall confine the focus of subsequent sections
to these simplified models. The details of simplified models and the folding
prediction approaches using them, are discussed next.

The HP Model

There are broadly two types of lattice model simulation [67] - the G& model
and HP model . Due to its effectiveness, popularity and wide usage in al-
most all developing computing methodologies, the HP model is selected for
the comparative study of computation methodologies. The basis of the HP
model, which was originally introduced by Dill [17], is hydrophobicity, which
is one of the properties that strongly affects folding, based upon which the
amino acid residues are split into two groups. Hydrophobic (H) or non-polar
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Fig. 7. Conformation in 2D HP model, sequential connection of 20 residues is shown
by solid line. Dotted line indicates T'N. Therefore, fitness = - (TN Count) = -10.

residues repel from water [2], and form inside the protein core, while the hy-
drophilic or polar (P) residues are attracted towards water and hence tend
to remain outside the protein core. The native conformation for a string of
amino acids is the one that possesses the lowest energy and is achieved when
the numbers of hydrophobic-hydrophobic (H-H) pairs, known as topological
neighbours (TN) (example given in Fig. 7), is maximized. By definition, TN
is formed by those adjacent H pairs that have unit lattice distance from the
view point of topological position but which are not sequential with respect
to each other in the sequence. The fitness function (F') is then simply defined
as:

F = -1 x total number of TN.
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The search using this model looks for the valid conformation (i.e. having
self-avoiding walk (SAW)) that has the maximum number of TN.

Search Procedures using the HP Model

If there are (n + 1) amino acids in a sequence then the number of SAW con-
formations is approximated [60] as:

Cn = Apn * (6)

Here, p is the connective constant or effective coordinate number which
varies from lattice to lattice, but has a estimated value 4.68401 for HP-like
simple lattice model and A = 1.205. The universal exponent v = 43/32 for a
2D HP model and y &~ 7/6 in the case of a 3D model. Enumerating techniques
or exhaustive search technique with feasible range are found to be applied ap-
proximately upto, n = 30. Beyond this limit the search becomes extremely
time consuming and hence infeasible. For example, for n = 40,

C,, ~ 2 860 274 487 506 831 970 500 921 533 in 2D
and
C, ~ 1 488 365 480 518 912 276 726 477 968 in 3D,

These are extremely large numbers. Searching for the optimal conforma-
tion from such an inordinate number is infeasible. Moreover, the number of
possible conformations for longer amino acid sequences increases asymptoti-
cally. PFP strategies include Artificial Neural Networks (ANN) [21], Support
Vector Machines (SVM) [46] and Bayesian Networks (BN) [58], while Hid-
den Markov Models (HMMSs) [4] which are based on Bayesian learning, have
also been used to convert multiple sequence alignment into position-specific
scoring matrices (PSSM) which are subsequently applied to predict protein
structures. The main drawback of HMM is that they have to be trained on
large sequence sets and they are also unable to identify long distance cor-
relations efficiently between the residues of a sequence which render them
unsuitable for ab initio PFP applications. BN in contrast, perform better
than HMM in classifying proteins of known structural super-family on amino
acid sequences. HMM limitations can be overcome somewhat by using ANNs
in a hybrid architecture [21], although ANNs are generally ineffectual for ab
initio PFP problem because of their inherent dependency on the training set
and the reality that information relating to a particular motif may not assist
in unravelling the protein folding in different motifs. Regarding determinis-
tic approaches to the PFP problem, approzimation algorithms [29, 50, 57]



Title Suppressed Due to Excessive Length 13

provide a good theoretical insight, though they are not particularly useful in
identifying minimum energy conformations [43], and while Linear Program-
ming (LP) [11, 47, 52] methods have been used for protein threading, they
have not been applied in ab initio applications, with the recent LP focus [12]
being confined to approximating the upper bound of the fitness value based
on sequence patterns only. This has meant that non-deterministic search ap-
proaches have dominated attempts to solve the PFP problem. Moreover, the
prediction has been proven to be NP-complete [8, 14] in these models. Clearly,
neither a polynomial time algorithm nor an exhaustive search [6, 13, 28, 60]
is feasible for practical amino acid sequence lengths, which are typically 100
or more, so non-deterministic search techniques have become very important.

There are many non-deterministic search approaches for solving the PFP
problem [49], including Hill Climbing (HC), Simulated Annealing(SA), Monte
Carlo (MC) and evolutionary algorithms such as Genetic Algorithms (GA).
Statistical approaches to PFP include Contact Interaction (CI) [69] and Core-
directed chain Growth (CG) [10], though of which are characterized by lower
accuracy as the sequence length increases and also by being non-reversible in
their search.

Generally because of their simplicity and effectiveness, GA [35, 36, 41, 71,
72] have been widely applied to the PFP problem, while a number of MC
versions including, evolutionary MC (EMC) [7, 44], the Tabu Search with GA
(GTB) [39], and Ant Colony Optimization (ACO) [63] are also noteworthy,
with GA outperforming MC in [72, 73] for instance. A comparative perfor-
mance analysis of these various techniques is presented next.

Underlying Principle of the Non-Deterministic Search Approaches

Here, we go though the fundamentals of different non-deterministic approaches
such as HC, SA and GA to provide a comparison between them. Fig. 8 pro-
vides the generic framework for all non-deterministic search approaches. HC

1. Initiate arhitrary solution]s) at random or generate using
dotnain knowledge.

2. Ubtain new solutionis) (x,,) by changing current solution
(x.using predefined rules of thumb.

3. Checlthe fitness factor fof the new solution(s).
4. IF fisimproved or satisfies ciitena THEMN aceept as current

5. TF ston criteria is reached THEN exit, ELSE GOTO 2.

Fig. 8. General principles of non-deterministic search approach.

for example, starts with a random bit string and then obtains a set of neigh-
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bouring solutions by single bit flipping of the current solution. Among these
new solutions (including the current one) the best is retained as the current
solution, with the process being repeated until the stop criteria is met. SA
uses the same framework, but differs in its acceptance criteria. When the new
solution is not better than the current, it can still accept it based upon some
randomly defined criteria (8), so that for example, step 4 for SA could be
expressed as:

Te x'ru lf f(ZCn) > f(mc) (7)

Otherwise,

- (%)

Ze — Ty, if random]0, 1) < exp(

Here, f is the fitness function. T is a (symbolic temperature) variable
having an initial value and T is gradually decreased at each iteration, often
regarded as cooling . SA explores more of the solution space compared to HC,
with the randomness introduced for selection in (7) and (8) which being re-
garded as a Monte Carlo (MC) method, with the terms MC and SA sometimes
being used interchangeably in the literature [69, 71, 72, 73].

GA differs mainly in step 2 of Fig. 8, as they obtain new solutions by mix-
ing them with current solutions using the well-known crossover operation (see
Fig. 9(a)) and then randomly inverting particular bits in the process called
mutation (Fig. 9(b)), which normally has a very small occurrence probabil-
ity. The crossover operation enables the GA to perform inherently parallel
searches, which is its most distinguishing and powerful feature, thereby mak-
ing the search stochastic rather than random. The GA optimizes the effort in
testing and generating new individuals if their representation permits devel-
opment of building blocks (schemata), a concept formalized in the Schemata
Theorem [23, 25, 33, 62, 71, 74, 75]. A more detailed explaination of GA and
its functionality is provided in the next section.

Insight of Genetic Algorithm

In a GA, an individual is represented by a list of data and instructions (called
locus or gene), with the list representing the solution known as a chromo-
some. The GA commences with either a randomly generated population or
uses domain specific knowledge, with traditionally, the solutions being rep-
resented as binary strings, though different encoding strategies are possible
such as permutation, value and tree encoding [49, 76]. In each generation,
the fitness of the entire population is stochastically evaluated by selecting
multiple individuals from the current population based on their fitness before
crossover is performed to form a new population, which becomes the current
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population in the next iteration. The i*" chromosome C; is selected based
on the fitness f; with the probability (f; / f), where f is the average fitness
of the population. Parents then produce off-springs by crossover at a rate p.
for the population of size n, thus forming the next generation. Mutation is
applied on the population of generated off-spring at a rate p,, and the selec-
tion probability of any off-spring or chromosome is again (f; / f). A small
percentage, typically between 5% and 10% of elite chromosomes - those hav-
ing high fitness factors, are copied to the next generation to retain potential
solutions. The remaining chromosomes (if they exist), which are unaffected
by crossover, mutation or elitism operations are then moved to the next gen-
eration. If an alphabet of cardinality |A] is used for chromosome presentation
then the cardinality of schema would be (|A|+1). For example, if two chromo-
somes [001101] and [101011] consist of an alphabet set {0, 1} then the schema
[*01 # 1] is represented using alphabet set {0, 1, %} , where * is a don’t-care
which is normally applied to cover the unrestricted locus of the schema. The
length of the schema 6(H) is the distance between the position of the first and
last non don’t-care characters, which actually indicates the number of possi-
ble crossover positions, so for example §(x01 % x1) = 4. For a chromosome
length [, there are {(JA| + 1)! — 1} possible schema , excluding the one that
is comprising of only don’t-cares, so a population of n chromosomes evaluates
up to [n{(JA| + 1)! — 1}] schemata, thus making the GA capable of implicit
parallelism . The order of schema o(H) equals the number of non-don’t-care
characters, so for example o(x01 * x11) = 4, and this governs the impact of
mutation upon the schema. The number of occurrences of schema H in a pop-
ulation of size at time ¢ (which is equal to the number of generations) is given
by m(H,t), from which the Schemata Theorem can be formally written as:

F(H)
7

o(H)

-1

m(H,t+1):m(H,t)< % (1= pe

)% (1= pn)? @) (9)

Thus in GA implementations, the requirement for perfect energy func-
tions [29] are reduced, with the crossover operation aiding the construction
of global solutions from the cooperative combination of many local substruc-
tures . Furthermore, a particular substructure that may be irrelevant for one
solution has a reasonable chance of being useful for another solution. In these
circumstances, the GA is driven by an implicit parallelism and generates sig-
nificantly more successful descendants than using a random search. In certain
cases, a number of best solutions or chromosomes are copied into the next
generation in an elitism process that guarantees fitter parents do not disap-
pear due to inferior offspring. While GA performance can be very effective
(26, 35, 41, 68, 71, 72] it still does not ensure that the final generation con-
tains an optimal solution. In fact, a GA can frequently become stuck in local
minima, a phenomenon that becomes more prevalent as the sequence length
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increases. While the impact of the stuck condition may not be critical in many
application domains, it assumes particular significance in the PFP problem,
where sequences are normally long and the folding problem intractable.

Parents Offspring
llE]ll ~ofafay o]  fof7[1[AT0]1]
AT1A[o[1]0[1] s [ATA[T00f0] | | (A0l [eIo[1]
Crossaover Site Mutation

(@) )

Fig. 9. Example showing (a) 1-point crossover, (b) mutation by 1 bit flipping.

. ., .
—> indicates crossover area

(a) Fitness, F=-5 (b) F=-2 (©)F=-9

Fig. 10. Example of crossover operation. Dotted lines indicate T'N. Conformations
are randomly cut and pasted with the cut point chosen randomly in between residue
14 and 15. The first 14 residues of (a) are joined with the last 6 residues of (b) to
form (c), where fitness, F' = -9. ‘W’ indicates hydrophobic residue and ‘07’ indicates
hydrophilic.

Hybridization of Genetic Algorithm

Non-deterministic search approaches are still evolving, with GA consistently
outperforming all other existing search techniques [49, 72, 73]. In principle, any
well performing local search operator can be employed within a GA to generate
new solutions, with provision for domain knowledge to also be integrated. This
hybrid GA (HGA) [15, 30, 48, 82] approach thus combines the power of a GA
with the effectiveness of the local optimizer, so having efficiently obtained
a potential optimum region, the local optimizer then hones in towards the
optimum solution, thereby leading to superior performance.
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‘—>" indicates mutating residue

~

(a) Fitness, F= 4 (b)F=-9

Fig. 11. Example of mutation operation. Residue number 11 is chosen randomly as
the pivot for move. 180° rotation alters (a) with F' = -4 to (b) F = -9.

To solve the PFP problem using the HP model, Unger et al [72] incor-
porated the selection criteria in equation (7) and (8) of the SA within the
GA to outperform all the MC variants, though this HGA technique required
more computational power to predict folding in longer sequences. Hoque et
al. [35, 36] further enhanced the performance of the GA by adapting domain
knowledge into PFP applications. Some of these strategies are now reviewed
in greater detail.

For presenting the solution or chromosome of GA population, Unger and
Moult [72] used conformation itself shown in Fig. 10 and Fig. 11 with op-
erations, instead of encoding such as binary encoding. By the nature of the
solution of this PFP problem, while searching for the optimum conforma-
tion, the phenotype of the chromosome, i.e. the conformation corresponding
to the solution becomes compact. Therefore, crossover and mutation both
becomes victims of collision increasing more often in producing invalid (i.e.
non-SAW) conformation. Therefore, it becomes increasingly harder to get op-
timal from sub-optimum compared to getting a sub-optimal from random or
initial conformation. As a consequence of increasing collisions for relatively
long sequences, the prediction fails to get the optimum solution at a very
early stage. In the context of schemata theorem (9), the crossover effectively
becomes p. = 0, so as the mutation p,, ~ 0, hence equation (9) becomes:

m(H,t+1) = m(H, t)(f(fH)> (10)

This indicates that without meaningful crossover and mutation effects
taking place, there will be no variation in the chromosome population and the
entire search process becomes stagnant.
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An operator that can move the intended part of the compact conformation
without disturbing the stable portion unnecessarily is certainly promising,
with one such operator being the pull move proposed by Lesh [43]. Hoque et
al. [35, 36] subsequently introduced two additional move operators, namely
diagonal move and tilt move together with the pull move. Less destructive
moves are given first preference during implementation as shown in Fig. 12.

| 2
®-
L
vy
oy
_/
é

i+2

T

=y
T
-

Fig. 12. (a) Diagonal move - node at B can be shifted to position D (provided D is
unoccupied), which does not alter the position of any other residue. (b) Pull move
operation. As a precondition place A and B need to be freed or B is permitted to be
preoccupied by (i — 1) node. (c) Tilt move, with the arrows indicating the moves.

If the covalent bonded two neighbouring nodes are diagonally positioned
with respect to each other, then the diagonal move shifts the said node
obliquely, provided new position is not already occupied. Pull moves are di-
agonal moves, where at least two residues are moved. In Fig. 12(b), prior to
pull move, if (i — 1)*" residue is already at position B, then the pull move
would be a diagonal move. Pulling can occur in either direction towards the
first or last residue. In the tilt move, any two connected residue by straight
line move together to two free locations (and intermediate residue if any need
free location as well), unit lattice distance apart, with the connecting line
of those residues being parallel to previous positions. The pull for this move
progresses to both ends by dragging all the residues. Diagonal move is less
destructive in the sense that it only moves one residue. Pull move operates
on at least two or more residues and stops as soon as a valid conformation
is achieved. Although tilt move moves all the residues, it is very effective in
a congested situation where pull move or diagonal move does not fulfil the
pre-conditions. Lesh’s experiments show the search using pull move is able to
explore optimum [43] conformation even for longer sequences, but it also con-
sumes very high computational resources if applied arbitrarily, which may not
be encouraging for regular implementation. Incorporating domain knowledge
is therefore an attractive option in attempting to improve the usage of these
various residual moves.

With this in mind, Hoque et al, [35] introduced various strategies to embed
domain knowledge to guide the GA via the guided GA (GGA). The Hs in an
optimum conformation in HP model, form a core due to hydrophobic forces,
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while the Ps exhibit an affinity with the solvent and so tend to migrate to
the outer surface, so the final conformation can be conceptualized as shown
in Fig. 13.

Outer Kernel
HP Mixed Layer

H Core Center

Inner Kernel

Fig. 13. Metaphorical HP folding kernels. The inner kernel called the H-Core is
compacted with Hs, while the outer kernel is formed of Ps. In between, a thin layer
of H-P bonds called the HP-mixed layer is formed.

The HP-mixzed layer crucially maintains the shape of the inner core and
has been proved that the optimum shape of the inner core is a square (in 2D)
or cube (in 3D) when the HP lattice model is used. While the search procedure
proceeds towards an optimum conformation, the H-Core forms spontaneously
[22, 80, 81], which does not necessarily place all the Hs in best position in
order to achieve the optimum conformation, which is reflected at the H-Core
boundary by the shape of the HP mized layer. This means some TNs get out
of the core, with those misplaced Hs becoming immediately bonded with Ps.
This observation provided the motivation for Hoque et al. [35, 36] to explore
some new strategies to overcome the problem.

A finite set of sub-sequences of the HP-mixzed layer, corresponding to the
most probable sub-conformations is constructed as shown in Fig. 14 and Fig.
15. Two broad categories of sub-sequences are defined; ¢Sy and ¢gSp, where
g € X (X is the natural number).These two categories completely cover the
HP mized layer including outer kernel. Let Sy and Sp represent segments of
H and P respectively. A segment refers to a contiguous string of length g, so
35Sy for example means -PHHHP-, i.e. g = 3 with the two boundary residues
being of the opposite type of the run. g is divided into even (g.) and odd
(go) numbers. For g, > 1, the category g,Sp is split into g,Sps and go,Sps,
where ze{1,2,3} which implies the run of P is bounded by an additional H
at the left (z = 1), right (z = 2) or both (z = 3) sides, while ¢ indicates no
additional H, so 3Sp3 means a sub-sequence -HHPPPHH-. Collectively, these
will be called as H-Core Boundary Builder Segments (HBBS) and are mapped
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Segment
-HBBC
gSH*/\‘ g5 :

B Hf//,’g_gq ‘m‘gg ap
| | |

[15, —> 5 15

-PHP- -PHHP- -HPH-

Stop

Bo8F,  EoSp_,;
35p,  -PHPPPHP- l

go PK-L2 3 HBBCS

}:1#”'/”:”2’7\-}(3

3521 -HHPPPHP- 3535 -PHPPPHH- 353 -HHPPPHH-

Fig. 14. Highly probable sub-sequences for the HP mized layer.

to potential sub-conformations which are referred to as H-Core Boundary
Builder sub-Conformation (HBBC). Sub-conformations that are very likely
are chosen with properties such as, H is put towards HCC and P is away, or
the two Hs contributing TN are encouraged with position towards HCC' as
well. According to their similarity and importance, the sub-conformations are
grouped as HBBC, HBBC5 and HBBCj as indicated in Fig. 14, where the
expansion of 25y is stopped; otherwise it would involve the H of the inner
H-Core. No particular sub-conformation is defined for g,Sp4 since it can be
taken care of by the sub-sequence 1S5g.

The fundamental basis of a sub-conformation is to place the H nearer
to the H-Core and P as far away from the H-Core as possible preserving a
TN within the sub-conformation if applicable. The objective is thus to ensure
that before becoming trapped in local minima, convergence is guided towards
a likely optimum conformation using the H-Core formation principles. The
protein conformation search can be viewed as a concatenation of favorable
schemata or sub-structures. A schema in this case is presented as a string of
{0, 1, 2, %}, where 0, 1, 2 may indicate one of three directions Left, Right and
Forward (Fig. 16) of the current H with respect to the previous two residues,
and ‘«’ is a don’t care, which signifies no particular goal may be assigned to
P as the parsing of the schema through the fitness function does not directly
reward P bonding. Fitness F' is indifferent to where P is positioned and is
assumed to be automatically taken care of [72]. However, as the generation
converges, the effectiveness of crossover and mutation (pivot rotation [71])
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| \ I A
=e—HCC/ i ol JJ' ‘ "4—HCC |
- '.'l ._“” '\\ -,’

(b) PHHP-  (6) -HPH- (d) -HPPH-

{e) Line Hook [LH) {f) Corner Hook (CH) (g} Clip Hook (IH)
38, ; -HHPPPHP-

Fig. 15. Highly probable sub-conformations of the corresponding sub-sequences.
For (a), (b), (c), (d) respectively correspond to 1Sg, 25, 1Sp, 25p and (e), (f),
(g) are the three possible variations of 3Sp1. The H-Core Center (HCC) is the mean
value of the coordinate of all the Hs’.

is weakened in PFP as the increasingly compact folded structure means the
failure of the crossover operation augments the number of self collisions [44].
Furthermore, without a complex sequence of mutations, there will often be
invalid conformations due to collisions within the compact conformation, so
during the search, there are fewer options and less potential in the population
to replace the near-optimal with the optimal solution. The mowve operators and
their associated domain knowledge used to implement the HBBC' mappings
assist at this stage. With the H-Core formation focusing on those Ps that are
covalent bonded with Hs, a sub-conformation (HBBC) is temporarily enforced
to replace don’t care (x) with one from {0, 1, 2} - whichever is most likely
for positioning P. Those Ps covalently bonded with Hs need to be placed
in such a way that they either remain (approximately) on the opposite side
of the H with respect to the developing HCC' or outside the H-Core. Using
this approach there will be a greater likelihood that a part of the proper
cavity formed by HP mized layer survives and eventually forms the optimal
conformation with maximal |F|.

The mapping however, is hard to implement directly as the fitness function
F changes, so a probabilistic constrained fitness (PCF) function is proposed
that rewards the desired mapping of a sub-conformation in the HP-mized
layer, if it exists, otherwise penalizes the mapping according to Table 1. Since
the corresponding sub-conformations are highly probable, PCF as its name
suggests therefore applies multi-objective fitness constraints to F. Clearly F
and PCF cannot be directly combined by summing, so a strategy has been
developed to obtain the total fitness (TF) as:
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L/0 i+2 i i+2 1
(a) (b) (c) (d)

Fig. 16. (a) to (c) indicate directions Left, Right and Forward respectively. (d)
Conformation example representing LLRRFFRRL, with the corresponding encoded
sequence 001122110.

Table 1. PCF value calculation.

HBBC Reward Penalty

HBBC, 1 1
HBBC, ( - f) <gl>
HBBCs (* <g72—1>> ((g‘f—w)

TF = a(t) « F + 8(t) « PCF (11)

where ¢ is the number of generations, @ and  are time-varying positive
weightings whose values are chosen by considering two alternate phases for
each generation pass, namely a positive and a negative phase. In the former, «
varies with a > (3 while in the latter § varies with o < 3. A sub-conformation
is enforced whenever a < 3, so PCF dominates over F' to force the change. To
vary the two weights a and ( alternatively, the following oscillatory (swing)
function is applied:

0(t) = A(1 + cos wy,t) coswot (12)

where w,;, << wp. The assignment of o and ( is are in (13) to (15):

Phase 1 : a(t) =46(t), 8(t) =1, if §(t) >0 (13)
Otherwise,
Phase 2 : a(t) =1, B(t) = —d(t), if 6(t) <0 (14)

Otherwise,
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Transient Phase : a(t) =1, f(t) =1 (15)

There are assignments of Is in equations (13) through to (15). This ar-
rangement is to preserve the already achieved partial conformation by using
the less dominant fitness in the early phase. The oscillatory nature of the func-
tion switches the dominating role of F' and PCF in a non-monotonous manner
which is not destructive to the achieved stability, but at the same time the
variations cover the best combinatorial dominance, which is hard to predict.
To institutively understand why this works in the context of schemata theo-
rem, consider, the positive phase (i.e. F' is dominating over PCF'), a favorable
schema had fitness f; (at time t), with the highly probable sub-conformation
enforcement, those TNs that resist or contradict the enforcement, in the worst
case, are broken and get fitness f;r where |fi x| < |f¢| and k is any posi-
tive constant. After a number of generations, when o« < [ situation turns
into @« > # and F predominates over PCF, say the fitness of the schema
becomes fiix1r-, where 7 is another positive constant. It is very likely that
| fe+ktr| > |ft+x| and if the enforcement is adopted then it is expected that
| fektr| > | f2], otherwise, the schema is destroyed with exponential decay. In
this way, all likely sub-conformations are selected randomly and eventually
this will lead toward a proper cavity being formed which has a maximal |F|.
If conversely a sub-conformation is reinforced during the negative phase, it
will break contradictory all TNs which we have tried to keep to a minimum
in the strategy to help reform the conformation. If the sub-conformation is
inappropriate (which is unlikely) it will disappear in the positive phase with
the reinforcement of TN formations, otherwise, it will help escaping from
becoming stuck in a local minima. In practice, even in a positive phase, sub-
conformations are reinforced if convergence is slow, to escape local minima,
with Fig. 17 illustrating the effect of this arrangement as the search progresses.

Table 2. Comparison of the performance of non-deterministic search approaches.

Length/Sequence GGA GTB EMC GA MC CI
20/ (HP)2PH(HP)2(PH)2HP (PH)2 9 9 -9 9 9 -9
24/ H2P2HP2HP2(HPP)4H2 -9 -9 -9 -9 -9 -9
25/ P2HP2H2P4H2P4H2P4H2 -8 -8 -8 -8 -8 -8
36/P3(H2P2)2P2H7P2H2P4H2P2HP2 -14  -14  -14 -12 -13 -14
48/(P2H)2(HP2)2P4H10P6(H2P2)2HP2H5 .23 -23 -23 -22 -20 -23
50/H2(PH)3PHAPH(P3H)2P4H(P3H)2PH4P(HP)3H2 -21 -21 -21 -21 -21 -21
60/P2H3PH8P3H10PHP3H12P4H6PH2PHP -36 -35 -35 -34 -33 -35
64/H12(PH)2((P2H2)2P2H)3PHPH12 42 -39 -39 -37 -35 -40

The overall performance of the new hybrid GGA approach is very impres-
sive, outperforming the other nondeterministic search approaches based on
the series of well established benchmark sequences given in Table 2.
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Fig. 17. (a) to (g) shows instances at generation 1, 14, 336, 426, 1434, 5396, 5646
respectively, where in (d) and (f), PCF' is dominating over F. For the swing function;
A=30, wm = 0.005, wo = 0.5.

GA computation can be speeded up in a number of ways. A simple policy
is to minimize the computational load of the frequently computed fitness func-
tion after each crossover and mutation. The fitness of the offspring created
after crossover can be computed faster by partially sharing the already com-
puted fitness of the parents. Similar optimization can be applied to mutation
which is demonstrated in details by Hoque et al [34].

Other Non deterministic Approaches

To further speed up computation, the core can be separately formed by con-
sidering only Hs. A chain comprising only Hs will form the core very quickly
using a GA or any other core formation approach, like the core-directed chain
growth (CG) [10]. Speeding up however does not make much difference to pre-
dictability, as the real conundrum is that the sequence has other components
together with Hs (i.e. the Ps). It was claimed that CG forms the optimal
core (which is a rectangle and cuboid for a 2D square and 3D cube lattice re-
spectively) by firstly counting the number of Hs in the sequence and then use
this as a kind of guideline. If this is so, then a library containing optimal core
of various size can then be employed to provide even greater speedup. But,
this is not happening because, for embedding rest of the parts, exhaustive
enumeration is applied, which claimed to guarantee complete search of the all
possibilities. This indeed may be feasible for short sequences, but equation (5)
clearly reveals the infeasibility for a typical sequence length in general. In CG
approaches, the actual power lies within the heuristic fitness function and fur-
ther within look-ahead procedure, though these benefits become blurred with
increasing sequence length. The strategy is also likely to fail even for short
sequences, when the core needs to have a twist for better fitness as shown in
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Fig. 18. Specialized procedures based on some assumptions can show speedup,
but thereby also becomes vulnerable in missing the optimum conformation.

(a) (b)

Fig. 18. Sequence length 60 (Table 1), (a) having fitness -35 can be detected by
CG, but (b) fitness -36 having twist (indicated by thick (blue) line) is not detected
by CG.

An alternative statistical approach is Contact Interaction (CI) , which is
regarded as improved MC (similar to (7) and (8)) by concept of cooperativ-
ity introduced in [69, 70] deriving from non-local interaction. The criteria of
accepting the new conformations generated during simulations, are not based
on the energy of the entire molecule, but cooling factors associated with each
residue define regions of the model protein with higher and lower mobility
(Fig. 19). CI randomly moves the residue based on MC but with additional
constraints upon the TN formation, loop will have low mobility and embedded
loop will reduce the mobility further, which complies with the cooperatively
concept.

High mobility

b

~

?

Low mobility

Fig. 19. Hydrophobic residues ‘a’ and ‘b’ are forming T'N. Due to TN (indicated as
loop), it is considered as having low mobility.
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The drawback of CI is that it involves random rather than stochastic
moves. Residues forming TNs are regarded sticky as they have low mobil-
ity, while they can provide fast convergence, they possess no technique for
back tracking from the wrong solution. This is especially prevalent in long
sequences, where increasing the level of embedding can worsen the required
back tracking and hence the prediction. The performance of CI has also been
compared with other methods in Table 2.

g b

Fig. 20. (a) A three-bead flip (b) Crankshaft moves (c) Rigid rotations; are incor-
porated within mutation operation.

A variation of MC named as new MC algorithm [7], applied as a variant
of the pruned-enriched Rosenbluth method (PERM)[83] that is basically a
chain growth algorithm on the Rosenbluth-Rosenbluth (RR) [84]. The residues
are placed to an unoccupied position based on some probability distribution,
which finally leads to weighted sample. Further, pruning conformation with
low weight and enriching high-weighted conformations are done stochastically,
which is basically the population based cut and paste (i.e. the crossover)
operation with a view to achieve higher fitness. This approach is basically
combining the effective part of a number of existing systems and thus improves
a bit for some cases and not reasoning why it should perform better and further
not relating any domain knowledge as well. Therefore, it is not reliable and
also does not get the putative ground problem for longer sequences of the
problem set.

(b) (©
c

(a)

Fig. 21. The constrained secondary structure (a) extended sheet (b) helix with
direction 1 (c) helix with direction 2.

Another new MC algorithm namely the evolutionary Monte Carlo (EMC)
[44] algorithm developed by incorporating optimization of genetic algorithm ,
showed improved performance further. EMC works by simulating a population
of Markov chains , where a different temperature is attached to each chain.
The population is updated by crossover, mutation and exchange operation
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that preserve the Boltzmann distributation of the population. It is reported
to incorporate the extensive search ability of GA using crossover operation
and also fast mixing ability of simulated tempering by simulating along a
temperature ladder. It incorporated the three different move with the mutation
such as a three-bead flip, crankshaft move and rigid rotations (Fig. 20). The
overall approach is basically the modified version of Unger’s GA [72], which is
using all the properties of a GA such as population, crossover, mutation and
roulette wheel selection using Boltzmann weight in this case. Again it performs
a bit improved respect to Unger’s GA but does not get the putative ground
energy state for the longer sequences. To improve its prediction, constraints
are assigned using secondary structure in protein folding such as shown in
Fig. 21. But the incorporation of such secondary structure has potential risk
which can easily miss the putative ground energy state and that is clearly
shown in [43].

It is reasonable to surmise that the GA produces so many samples by
crossover stochastically and by mutation randomly (usually set at a low rate)
without tracking of chromosome that might be reproduced. From equation
(9), it is concluded that favorable schemata are highly likely and survive ex-
ponentially; therefore similarity will grow having very high change of produc-
ing same chromosome repeatedly. So, memorizing the existing chromosome,
the repetition can be subsided. Therefore, GA hybridization with tabu search
(GTB) could be a potential candidate for the PFP problem. Tabu search is
a local search technique, which enhances the performance of a local search
method by using memory structures. Jiang et al. [39] applied the GA with
tabu search for the 2D HP PFP sequence. This procedure enlists dissimilar
solution rejecting duplicates or closely similar chromosomes. It performed well
to some extent, but again, according to equation (6), the number of possible
samples is an inordinate number, therefore, memory requirement tends to be
infinite for longer sequence and performance decreases with increasing length.
Lesh [43] also incorporated tabu search with the pull move and indicated that
it was a resource intensive problem. Hence, incorporation of tabu search within
GA, i.e the GTB is not promising. Finally, the HGA designed and developed
by Hoque, et al. [35, 36] removes these problems effectively and efficiently.

Therefore, it can be argued that any approach that is unable to withstand
the scaling of the sequence is not promising in the context of trying to solve
the ab initio PFP problem. On the other hand, crossover as the main oper-
ator in GA, does not suffer from scaling problems, which makes it capable of
locating the optimum region effectively before a local optimizer is employed
to complete the prediction process efficiently. For high performance hybridiza-
tion therefore, local optimizers need to be designed and developed liberated
of any possibility of scaling effects.
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4 Conclusions

This chapter has analysed the performance of contemporary hybrid evolu-
tionary computing techniques and in particular, the hybrid genetic algorithm
(HGA) in regard to securing an effective solution to the challenging ab initio
protein folding prediction (PFP) problem. This approach has been proven to
be sufficiently robust to withstand the scaling of PFP sequences and also to
locate optimum solution regions, which subsequently allow for the incorpora-
tion of a local optimizer to converge to improved solutions. Integrating ad-
ditional domain knowledge exhibited considerable promise in the HGA, with
coarse-grained approach providing a strong theoretical framework for these
comparatively simple PFP-based models.
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