
 
 

  

Abstract—In this paper, a Guided Genetic Algorithm (GGA) 
has been presented for protein folding prediction (PFP) using 
3D Hydrophobic-Hydrophilic (HP) model. Effective strategies 
have been formulated utilizing the core formation of the 
globular protein, which provides the guideline for the Genetic 
Algorithm (GA) while predicting protein folding. Building 
blocks containing Hydrophobic (H) – Hydrophilic (P or Polar) 
covalent bond are utilized such a way that it helps form a core 
that maximizes the fitness. A series of operators are developed 
including Diagonal Move and Tilt Move to assist in 
implementing the building blocks in three-dimensional space. 
The GGA outperformed Unger’s GA in 3D HP model. The 
overall strategy incorporates a swing function that provides a 
mechanism to enable the GGA to test more potential solutions 
and also prevent it from developing a schema that may cause it 
to become trapped in local minima. Further, it helps the 
guidelines remain non-rigid. GGA provides improved and 
robust performance for PFP.  

I. INTRODUCTION 
ROTEIN is the result of a three dimensional folding of a 
linear chain of amino acids. The chain called the primary 

structure is the sequential concatenation of amino acids 
taken from a set of 20 members only [1]. Two amino acids 
concatenate by releasing water and forming peptide bond. 
The folding of a protein called native state is unique for 
same sequence, which is generally the lowest free energy 
state. The protein folding prediction (PFP) is the problem of 
determining the native state of a protein from its primary 
structure. This prediction is of immense importance [2] 
because the 3D or tertiary structure determines the biological 
functions and its understanding is essential for drug 
designing [3].  

The protein folding prediction (PFP) is a combinatorial 
optimization problem, which so far has evaded solution in 
most of the cases because of the astronomical number of 
potential solutions [4]. Systematic exhaustive search is 
infeasible especially for the long sequences. The 
complicated form of the energy function does not suggest 
any obvious search strategy. Most searches become trapped 
in one of the many local free energy minima characteristic of 
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the energy landscape. In practice, X-ray Crystallography 
(XC) and Nuclear Magnetic Resonance (NMR) are used to 
determine the native conformation [5], but both the methods 
are time consuming and for some cases infeasible such as 
membrane protein.  

The most successful approach in case of hard optimization 
problem like PFP so far, is based on hybrid evolutionary 
approach [4]. In this approach, the model does not deal with 
the full atomic description of the chain; only main chain 
atoms and sometimes an additional one-side chain atom 
representation are used. Moreover, a lattice model is used 
avoiding the continuous conformational space that simplifies 
many of the required calculations and enables some 
computation to be performed at the backend before the 
actual simulation begins. A simplified energy or fitness 
function is used. The HP model introduced by Dill [6] is 
such a model having these properties and mostly used. PFP 
in HP model has been proved to be NP-complete [7] [8]. 
Therefore deterministic approaches are not practical. Two 
ways of carrying out the search for low energy 
conformations are used [4]: enumeration for highly 
simplified cases and non-deterministic search technique such 
as Genetic Algorithm (GA), which is evolutionary in nature. 
Several other outstanding concepts such as a number of 
versions of Monte Carlo (MC), Evolutionary MC (EMC) [9] 
[10], Simulated Annealing (SA), and Tabu Search with GA 
(GTB) [11], Ant Colony Optimization [12] is mentionable. 
Statistical approaches such as Contact Interaction (CI) [13] 
and Chain Growth (CG) [14] have also been applied to PFP, 
however these techniques are all characterized by the fact 
that as the sequence length increases, and the accuracy 
reduces, except for enumeration [15] or exhaustive 
maneuvers such as in [16]. A prediction in 2D HP [17] helps 
to develop the strategies easily rather in 3D HP for obvious 
reasons. But the 3D extensions are equally important to 
make the prediction strategies mapping towards real PFP. 

Our approach for PFP in 3D HP is using GA. GA reduces 
the need for highly accurate strategies, which would avoid 
requirement of redefining strategies separately for each 
individual sequence, i.e. a generic guideline does the 
purpose. Further, GA is driven by an implicit parallelism and 
generates significantly more successful descendants than 
random search. GA has been proved to outperform MC 
particularly for PFP in the HP model [18] [19]. Again PFP in 
HP model is one of the most challenging optimization 
problems that make the job of any search approach very 
difficult including GA. Our interest in this paper is to find 
out, how this problem pose difficulties for GA while 
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searching optimum conformation and innovating new 
strategies to overcome them.  

For a hard optimization problem like PFP, GA faces two 
type of difficulty, explicit and implicit to GA operations. As 
the search proceeds using simple GA, the similarity is found 
to be increasing among the population and diversity reduces. 
As a result, GA gets stuck to sub-optimal solution. On the 
other hand, by crossover or mutation operations GA may not 
produce valid conformation since the conformation needs to 
be a self-avoiding walk (SAW), which is implicit to the PFP. 
Further, as the optimum conformation is highly likely be a 
compact one, crossover and mutation become ineffectual by 
producing increasingly non-SAW conformation and the 
search rarely get any progress. Our strategies to overcome 
this difficulty are based on core formation concept. For the 
formation of proper core boundary additional constraint, 
which is generic in nature, has been combined with the 
existing fitness function. Their strategic combination helps 
predict the optimum conformation effectively and in a 
complementary manner.  

The remainder of the paper is organized as follows. In 
Section II, the HP model and metaphorical view of the 
protein core has been described, while Section III provides a 
proof of the optimal shape of the H-Core in three 
dimensions. Section IV describes the fine set of sub-
conformations used as building block for HP mixed layer. 
Section V discusses detail implementation of search 
procedure including result, while Section VI discusses the 
theoretical aspect of the overall approach using GGA. 
Finally, Section VII draws the conclusions.  

II. THE HP LATTICE MODEL 
 
The HP model has been introduced by Dill [6] based on the 
observation that the hydrophobic forces are dominating the 
protein folding. In the model, amino acids are represented as 
a reduced set of ‘H’ (Hydrophobic or Non-Polar) and ‘P’ 
(Hydrophilic or Polar) only. The protein conformations of 
the sequence are placed as a self-avoiding walk (SAW) on a 
2D square or 3D cube lattice.  The energy of a given 
conformation is defined as a number of topological 
neighboring (TN) contacts between those Hs which are not 
sequential with respect to the sequence. The PFP is formally 
defined as a given amino-acid sequence, 

ms sssss ,,,, 21= , (m = total amino acids in the sequence) 

a conformation c needs to be formed where, )(* sCc ∈ , 

energy { }CccECEE ∈== |)(min)(* [12]. Here, )(sC  is 
the set of all valid (i.e. SAW) conformations of s. If the 
number of TNs in a conformation c is q then the value 
of )(cE  is defined as qcE −=)( . In a 2D HP model (Fig. 1, 
(a)) a non-terminal and a terminal residue both having 4 
neighbour can have maximum of 2 TNs and 3 TNs 
respectively. In case of 3D, maximum possible neighbours 
are 6 in numbers and the maximum TNs are 4 and 5 
respectively for a non-terminal and terminal residue of the 
sequence. 

It is well known [20] that the Hs form the protein core 
freeing energy. The Ps, having affinity with the solvent tend 

to remain in the outer surface. This paper visualizes the 
folded protein through the 3D HP model as a three-layered 
kernel (Fig. 1(b)). The inner kernel, called the H-Core [20] 
[21], is compact and mainly formed of Hs while the outer 
kernel consists mostly of Ps. The H-Core Centre is called 
HCC (defined in Section III, B). The composite thin layer 
between the two kernels consists of those Hs that are 
covalent bonded with Ps, which for the purpose of this paper 
is referred to as the HP mixed layer.  

III. OPTIMUM SHAPE OF 3D H-CORE 
 
This section develops a proof for the optimum shape of the 
H-Core, under the assumption that the segment is a sequence 

of Hs only and it is a variation of the proof presented in [20].  
In 3D HP Model, every H can have a maximum of 6 
neighboring (Forward, Backward, Left, Right, Up and 
Down) residues, therefore H has 6 sides. The positioning of 
H inside the core (assuming a rectangular box) can be 
categorized based upon the number of its position within the 
core (Table I), such as H at corner, edge, plane and interior 
will respectively have 3, 4, 5 and 6 (sides) inside core. The 
objective is now to determine the shape of the H-Core that 
will maximize the total number of sides inside the core. A 

TABLE I 
TOTAL H SIDES INSIDE THE CORE 
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Corner 8 3 24 
Edge (1) 4 (l-2) 4 16l-32 
Edge (2) 4(w-2) 4 16w-32 
Edge (3) 4(h-2) 4 16h-32 
Plane (1) 2(l-2) (w-2) 5 10(l-2) (w-2) 
Plane (2) 2(w-2) (h-2) 5 10(w-2) (h-2) 
Plane (3) 2(l-2) (h-2) 5 10(l-2) (h-2) 

Interior (l-2)(w-2)(h-2) 6 6(l-2)(w-2)(h-2) 
Total inside bonding sides, B= 6lw-2(lw+lh+wh) 

 

  
(a) (b) 
 

Fig. 1. (a) Conformation in a 2D HP Model shown by solid line. 
Dotted line indicates TN. (b) A 3D metaphoric HP folding kernels. 
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shape with fewer corners is preferable otherwise a number of 
H sides may be outside the core. Among all possible 3D 
shapes drawn in lattice model, rectangular box will have 
fewer corners, i.e. least loss of the H sides going out of the 
core.  Let us assume the length, width and height of a 
rectangular box are l, w and h respectively. The total number 
of Hs inside the core equals the core volume ( boxV ), that is,  

 
whlV =box   (1) 

 
From Table I, we get 
 

)(26 whlhlwlwB ++−=    (2) 
 
From [17], we find that in 2D the optimum core is a square, 
therefore, 
 

wl =  (3)  
 

Using (1) and (3) in (2), we get,  
 








 +−=
l

VlVB box2
box 226  (4)  

 
To maximize B, (4) is differentiated with respect to l and 

with boxV  = constant. Using 0=
dl
dB , we obtain, 

 
wVl == 3

box  (5) 
 

Equation (4) will maximize B since, 0
2

2

≤
dl

Bd . Using (5) 

in (1) we get, 
 

3
boxVh =  (6) 

 
 Thus, a cubic volume can form the best core cavity. Now, 

let Hn  be the number of total H in a sequence. The number 
of those H immediately covalent bonded with P and being 
on surface (Plane, Edge and Corner) in a cubic core can be 
expressed as, ( )8126 3

1
3

2
+− HH nn . Therefore, the probability 

of H being on non-corner is, 
 

   ( )
   ( )463
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The probability of H being in the corner is, 
 

   ( )463

4Pr
3

1
3

2corner
+−

=
HH nn

 (8) 

 

These measures given above are referred in the following 
sections.  

IV. SUB-CONFIRMATIONS FOR HP- MIXED LAYER  
 

To form the cavity, it is straightforward to think of placing 
the P of a -HP- segment on the opposite side of H with 
respect to the developing HCC, while searching for the 
desired conformation. With this placement, the cavity would 
tend to form a spherical shape, which is not the desired cubic 
one. To address these problems, sub-conformations that are 
highly probable corresponding to sub-sequences is defined 
(Fig. 2) and later applied. Two broad categories of sub-
sequences are defined; HgS  and PgS , where Ν∈g  (N is 
natural number). These two categories completely cover the 
HP mixed layer including outer kernel. Let HS  and PS  
represent segments of H and P respectively. A segment 
refers to a contiguous string of length g , so HS3 for 
example means -PHHHP-, i.e. 3=g  with the two boundary 
residues being of the opposite type. g  is divided into even 

 
 
Fig. 2. Highly probable sub-conformations of corresponding sub-
sequences for the HP mixed layer. 
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eg  and odd og  numbers. For 1>og , the category PoSg  is 
split into 

φPoSg  and 
xPoSg , where }3,2,1{∈x  which 

implies the run of P is bounded by an additional H at left 
( 1=x ), right ( 2=x ) or both ( 3=x ) sides, while the former 
category, by φ  indicates no additional H. For example, 

3
3 PS means a sub-sequence -HHPPPHH-. Collectively, they 
will be called as H-Core Boundary Builder Segments 
(HBBS) and they are mapped to potential sub-conformations 
which are named as ‘H-Core Boundary Builder sub-
Conformation’ (HBBC) in this paper. Conformations that 
are highly likely are chosen where either ‘H’ is put towards 
HCC and ‘P’ is away, or the two Hs contributing TN are 
encouraged with position HCC as well. According to the 
similarity of importance, the sub-conformations are grouped 
as HBBC1, HBBC2 and HBBC3 as indicated in Figure 2. As 
in Figure 2, the expansion of HS2  is stopped, otherwise it 
would involve the ‘H’ of the inner core or the H-core. No 
particular sub-conformation is defined for 

φPSg0 since it is 

taken care of by the sub-sequence HS1 . 

A.  Formation of Probabilistic Constrained Fitness 
During searching for an optimum conformation if a sub-

conformation corresponding to a particular sub-sequence 
exists for HP mixed layer exists in a developing 
conformation, it is rewarded, and otherwise it is penalized. 
This measure of this fitness is named Probabilistic 
Constrained Fitness (PCF) in this paper. If any member of 
HBBC1 correspond to the related sub-sequence that PCF will 
be added a ‘-1’ as reward, otherwise a ‘1’. Table II shows 
the details.  

B. Implementation of the Sub-Conformation 
   Before going into the details of how the HBBCs are 
implemented, a number of terms need to be defined. (1) H-
Core center (HCC): It is calculated as the arithmetic mean of 
the coordinates of all H. That is, 

 

∑
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HCC z
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z

1

1  (9) 

 
Before enforcing any sub-conformation, the HCC ( HCCx , 

HCCy , HCCz ) is updated to place ‘H’ near toward HCC and 
‘P’ as far from HCC as possible. (2) Diagonal Move: If three 
consequative residues are CBA and BCAB ⊥ , then 
diagonal move implies moving B to ( )BCA −+ . (3) Pull 
Move: In this paper we used short Pull Moves as defined in 
[16]. If a sequence has total m residues and CBA are three 
consecutive points indexed )1( +i , i , )1( −i respectively, 
then B is pulled to diaginally to a free point and then C need 
to be placed diagonal to A and make BCAB ⊥ . The pull 
propagates towards the first residue until a valid conformtion 
is reached. That is, thi )2( −  residue will occupy the previous 

position  C or thi )1( −  residue, thi )3( −  will occupy the 

previous position of thi )2( −  residue, and so on towards the 
first residue. Short Pull Move imply that it pull stops as soon 
as a valid conformation is reached. The pull can be in either 
ways towards the first or the last residues. (4) Tilt Move: 
Two or more consecutive residues with precondition that all 
of them on a same line move straight together to adjacent 

TABLE II 
 FORMATION OF PCF  

Value calculation of PCF HBBC 

Reward Penalty 
HBBC1 -1 1 

HBBC2 







−

eg
2  










eg
2

 

HBBC3 







−

−
)1(

2

og
 


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


− )1(

2
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                    (a)                                       (b) 

 

 
                  (c) 

 

 
                  (d) 

 

 
                  (e) 

 

 
                 (f) 

 
Fig. 3.  (a) pre-condition and (b) desired post-condition. At (c), if 
location 13 is free and 12 is either free or already occupied by residue 
(i-1), then pull moving of A to 13 will get the desired result. At (d) C 
can be pull moved to 13 if 13 is free and 14 is either free or already 
occupied by residue (i+3). If (c) and (d) fails, at (e) B can be pull 
moved to 2 if 2 and 3 are free. In (f), if 3 and 4 are free then placing B 
to 4 by pull move is possible, and desired conformation is achieved. 
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next parallel line one lattice distance at a time if free points 
are available, and the pull propagates towards both ends upto 
the terminal residues.  

These moves are used to implement the sub-

conformations defined in the early section. During 
implementation less destruction to the other part of the 
conformation is desirable. Diagonal move is the least 
destructive. If the mapping of the sub-conformation has 
failed using diagonal move then pull move is tried otherwise 
the tilt move is applied. Tilt move destructs the stability of 
the other parts more with respect to diagonal or pull move, 
on the contrary, tilt move needs less number of move and it 
is easily implementable for complex sub-conformation 
mapping. Among the HBBCs, sub-conformations are 
specified only for HBBC1 and HBBC3. Mapping of some of 
the sub-conformation has been demonstrated from their 
precondition from Figure 3 to 5. 

Note that, HBBSs that correspond to HBBC1 are one to 
one mapping. But HBBSs that correspond to HBBC3 are 1:3 
or 1:6 mapping. In case of HBBC3, probability measure is 
used to select them for implementation. HBBC3  can be part 
of line ( that is a part of plane or edge) and corners of a core, 
therefore the probabilities (using (7) and (8)) for 
constructing Line Hook, Corner Hook and Clip Hook 
(providing none of them already exist) are assigned as, 

cornernonLH −= PrPr , 
2

Pr
Pr corner

CH =  and 
2

Pr
Pr corner

IH =  

respectively when 1=x  or 2=x  in 
xPoSg . For 3=x , there 

will be a total of six variations, and the probabilities will be 

2
Pr

PrPr
21

LH
LHLH == , 

2
PrPrPr

21
CH

CHCH ==  and 

2
PrPrPr

21
IH

IHIH == . If 
xPoSg corresponds to a particular 

member of HBBC3 in a sequence and it is adopted by any 
developing conformation during a particular search, then it 
may be allowed to be replaced as there are more than one 
sub-conformations possible. The replacement probability in 
the subsequent search iterations with any of the remaining 
candidates is chosen by maximum probability proportion of 
the remaining probabilities set. Then, the candidate is 
selected for the replacement based on their probabilities 
proportion calculated early for the occurrence probabilities.  

V. IMPLEMENTATION OF THE PREDICTION 
 
Though the added constraint (PCF) has been defined for a 

conformation, the ultimate goal is to maximize the fitness 
.F  The search process is divided into two alternate phases. 

In phase one, F dominates over PCF and the core starts 
building. In the alternate phase (say phase two), PCF 
dominates over F. This phase take care the proper formation 
of the HP mixed layer. Further, the HBBCs implantation is 
done here since PCF would favor the change. The HBBCs 
implantation is done only if they are not found for the 

          
                  (a)                                           (b) 

 

 
                  (c) 

 

 
                 (d) 

 
Fig. 5.  (a) pre-condition and (b), (c) and (d) desired motifs. The 
desired motifs can be achieved in a number of ways. Also assume a 
situation that 1 to 6 points are not free or congested. Now, as an 
example tilt move in (a) can be applied to place C, D, E to 15, 16 and 
17. Then A needs to move to the free location at 10. To achieve (c) 
using tilt move, DE can be shifted twice, first (16, 17) then to (22, 
23). A will need to move to 11, pull move will help. Similarly (f) can 
be achieved by tilt moving C, D twice and finally placed to (21, 22). 
No additional move required further. 
 

 
                    (a)                                       (b) 

 
                  (c) 

 
                  (d) 

 

 
                  (e) 

 

 
                 (f) 

 
Fig. 4.  (a) precondition and (b) desired post-condition. At (c), it is 
possible to get the desired motif by pull moving A to 10 and D to 11 
if possible. Otherwise at, (d) or (e) either B can be pull moved to 1 or 
C can be to 4. If 1 and 4 are not free and 2 and 3 are only free then as 
shown in (f), placing B and C by tilt move to 2 and 3 will bring 
desired motif. 
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corresponding sub-sequences. This action may reduce the 
already achieved fitness F. But hopefully it would help 
reform proper cavity that would maximize the H bonding 
inside core. As the phases altered through search, the impact 
is such that F and PCF come up with common goal – which 
is highly likely the optimum one. The total or combined 
fitness is defined as  

 
PCFtFtTF *)(*)( βα +=  (10) 

 
where t is tth generation while search is carried out by GA. 

To alter the weight of α  and β  to dominate F and PCF 
over each other, a swing function (equation (12) is used.  

 
ttAt m 0cos)cos1()( ωωδ +=   (11) 

 
where 0ωω <<m , t = number of generation. The assignment 
of α and β is as,  

endif
ttelse

ttttelseif
tttthentif

1)(,1)(
)()(,1)(0)(

1)(),()(0)(

==
−==<

==>

βα
δβαδ

βδαδ

 

 
Algorithm-I: GGA for PFP using 3D HP 

 
A typical value set for )(tδ is, A=30, mω = 0.004 and 

0ω =0.05. The value of A (amplitude) is selected as, 

( )PCFFA ,max2 ≥ , where the upper limit F can be 

predicted by ]}[],[min{*2 SeqOSeqEF −=  [22]. 
][SeqE and ][SeqO  indicate the number of even and odd 

indexed H residues in the sequence. Note that, minimum 
value of 1|)(| =tα  and  1|)(| =tβ are maintained, and never 
set to zero. This is to preserve the sub-conformation or 
schema developed in the alternate phase with good features.  

 
The detail search procedure is given in Algorithm-I. A 

simple GA is used with population size of 200 was chosen 
for all sequences, the elite rate = 0.10, cp = 0.85, mp  = 0.5 
and a single point mutation by pivot rotation. The 

implementation of crossover and mutation is same as in [18] 
[19] but without any special treatment such as cooling. 
Selection procedure was based on roulette wheel. 

 

A. Results  
Simulations were carried out for bench mark 3D 

problems [23] (see appendix) with the target set equal to 
putative ground energy. Results are give in Table III. The 
comparisons given in [12], are time based on program 

Input:    Sequence S, Target Fitness of the   
                Sequence (Target_F) 
Output:  3D Folding of the given sequence. 
   COMPUTE PCF; COMPUTE A  
     t=0             /* Generation count */ 
     F=0           /* Best fitness found from the search */ 
     Fillup the population with random (valid)  
                       conformation possible for S. 
While F < > Target_F THEN 
{   t = t + 1 
     COMPUTE δ(t), α(t), β(t), TF 
     Crossover  
     Mutation     
     IF δ(t) < 0 THEN  
         { FOR i =1 to population_size DO 
            Check chromosomei for any miss- 
               mapping of HBBC1 or HBBC3 
             IF miss-mapping true then 
 { Re-map the sub-sequence to corresp- 

    onding HBBC using move-sets. }}              
     COMPUTE TF 
     IF no improvement of the best solution for long 
        {Remove twins from population} 
     Sort and Keep Elite. 
     F  Best fitness found from the population. 
} 
END. 
 

TABLE III 
PERFORMANCE COMPARISONS 

SL E GGA X CI CG HZ 

1 -32 -32 (3286 ) -32 -32 -32 -31 
2 -34 -34 (14288) -34 -33 -34 -34 
3 -34 -34 (4655) -34 -32 -34 -31 
4 -33 -33 (15898) -33 -32 -33 -30 
5 -32 -32 (7934) -32 -32 -32 -30 
6 -32 -32 (19208) -32 -30 -32 -29 
7 -32 -32 (21084) -32 -30 -32 -29 
8 -32 -32 (5053) -32 -30 -32 -29 
9 -34 -34 (9872) -34 -32 -33 -31 

10 -33 -33 (7246) -33 -32 -33 -33 
Performance comparison for 3D PFP [12]. X implies PERM, 

CHCC and ACO algorithm, E indicates the putative ground energy, 
and the format for GGA is: “maximum fitness achieved (minimum 
generation)”.  GGA results are from two iterations only. Results of 
other algorithms such as CI, CG and HZ are given. 
 

TABLE IV 
PERFORMANCE COMPARISONS WITH UNGER’S GA [19] 

ID NEW CONFORMATION EUGA 
EGGA 

(GEN) 
643d.2 13232616155354164453251163646422

3131352626633555416224233154453 
-29 -30 

(14186) 
643d.3 13223132623164154615426454136363

3553554641461323161424632546614 
-35 -38 

 ( 493) 
643d.4 13251425263636463154646425535241

4423232611414135413536162324552 
-34 -36 

(27450) 
643d.6 13235264444236353635355246325426

1614252411355146641413354236323 
-29 -30 

(1899) 
643d.9 13252624451364626132536154131462

3135232461641422635235553141525 
-32 -34 

(14848) 
643d.10 13231615535514141623245441632423

3624146363515333622411114452424 
-24 -25 

 (362) 
Performance comparison between Unger’s GA and our approach 

(GGA).  The sequence IDs are same as in [19].  EUGA is the achieved 
lowest energy in [19] and EGGA (Gen) implies achievement in GGA and 
Gen implies generation at which the EGGA is achieved.  
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running time. This may not be appropriate comparing non-
deterministic search with exhaustive or enumerating or 
statistical approaches. For GGA, we involved visulation and 
saved the full trace including several analysis. Non-
deterministic approach (such as GGA) employ general 
technique whereas other special approaches employ special 
technique based on sequences which may not perform 
uniformly in every cases and hard to  generalised.  

Further, to compare the performane between similar 
Algorithm (Unger’s GA[19]), simulations were also carried 
out with some of the large sequences with one iteration 
having target set to 2 more of the achieved results in [19]. In 
all the cases, we found better result given in Table-IV. New 
conformations are presented using our Self Direction 
Dependent Coding (SDD-Coding) scheme which produces 
same encoded output for same conformation (i.e. non-
isomorphic) whereas the traditional coding scheme [12][14] 
does not always produce same coding for same 
conformation (i.e. isomorphic). In this SDD-Coding, the 
direction of first points towards the second is marked ‘1’ and 
the reverse is ‘2’. Direction of first 90 degree (in any co-
ordinate based direction) turn is coded ‘3’ and the reverse is  
‘4’. Then, applying right-hand rule from ‘3’ to ‘1’ , the 
thumb direction is coded as ‘5’ and the reverse is ‘6’. 

 

VI. DISCUSSION 
 
In this section, we discuss the theoretical aspect of the 

approaches presented in this paper. We begin with simple 
GA and analysed the reasons for its possible failure to 
predict an optimum conformation. Two major drawbacks 
were observed. GA computation is based on schema 
theorem. And schema theorem for PFP states [4] that short, 
flexible schemata with above average performance will 
receive exponentially increasing survival chance in the 
subsequent generations while those schemata with below-
average performance will decay exponentially. Therefore 
one obstacle using simple GA’s is that similarity within 
population grows quickly which leads to a suboptimal 
results and gets stuck. As the similarity grows the crossover 
will most likely happen between similar chromosome and 
off-spring will inherit the same properties. Therefore 
crossover becomes ineffectual and the same is true for 
mutation. Since, in the midst of similar chromosome even if 
mutation produces a higher fitted chromosome, it will be lost 
due to the selection procedure. To address this first problem 
we apply elitism (Algorithm-I) to ensure that solutions 
having higher fitness (F) are not lost and removed twins 
from population with similarity from 100 to 80% specially if 
we observe that for a long time there is no progress from the 
on going search.  

The second obstacle is the operation of crossover and 
mutation may not be effective unless the output is a SAW 
conformation and follows the sequential change through the 
lattice points. Now, as the optimum conformation is 
relatively compact, crossover and mutation confront more 
collision or produce invalid conformation increasingly as the 

search is going on.  Our specific implantation procedure of 
HBBCs moves the compact conformation without collision 
and the introduced move operators are less destructive to the 
already gained fitness. The move creates probable 
reformation of the H-core cavity to maximize the H-sides 
inside the H-Core. Hence, this approach makes change of the 
non-progressive situation in such a way that it can enhance 
the chances of gaining higher fitted conformations.  

The energy landscape of the protein folding, even using 
HP model is very critical [24]-[28]. Due to this, while 
searching for putative ground fitness, the on going progress 
in achieving better fitness becomes increasing difficult. This 
implies that a converging search progress becomes 
extremely slow and often gets stuck (Table III and Table IV) 
before reaching to the putative ground energy since the 
effect of increasingly compact conformation. The lack of 
effective move operator with associated intelligence to 
switch from near optimum to optimum, was absent in most 
of the methods applied early. Therefore, strategy like GGA 
helps achieve improvement close to putative ground energy 
even for single fitness, is of great importance. 

 

VII. CONCLUSION 
 
In this paper, the novel strategies using GGA reported 

earlier for the 2D HP model have been extended for 3D HP 
model. Using the proposed algorithm, we reached the 
targeted putative ground benchmark conformation. Also, we 
achieved optimum conformation compared to the early 
implementation of GA for 3D HP model by Unger and 
Moult [19]. Our strategies use new operators associated with 
domain knowledge, where it maps the sub-sequences of HP-
mixed layer into highly probable sub-conformations. The 
mapping is finite, short and generic and free from the scaling 
effect of the complexity of the sequences length. Additional 
constraint associated with the overall implementation 
through the swing function offers a way of testing more 
potential conformations while the conformation becomes 
compact rather than getting stuck.  With the implantation of 
HBBCs, formation of line (as part of an edge or plane) and 
corner has been considered for the optimum cubic core in 
3D HP model. The granularity level of HBBC’s forming part 
of line to compute the probability of it being a part of either 
an edge or a plane can be extended for future work which 
would further speedup the search of an optimum 
conformation. Also, an appropriate parameter prediction of 
the swing function and implementation would improve it 
further. However, the overall approaches are robust enough 
to remove the causes of failures of GA and can be extended 
for application on a real Protein Folding Prediction. 
However, designing of an efficient operator would be an 
important issue for this challenging and hard optimization 
problem.  
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APPENDIX 
Benchmark [23] 3D sequences 
 
SL.1:   HPH2P2H4PH3P2H2P2HPH3PHPH2P2H2P3HP8H2 
SL.2:   H4PH2PH5P2HP2H2P2HP6HP2HP3HP2H2P2H3PH 
SL.3:   PHPH2PH6P2HPHP2HPH2(PH)2P3H(P2H2)2P2HPHP2HP 
SL.4:   PHPH2P2HPH3P2H2PH2P3H5P2HPH2(PH)2P4HP2(HP)2 
SL.5:   P2HP3HPH4P2H4PH2PH3P2(HP)2HP2HP6H2PH2PH 
SL.6:  H3P3H2PH(PH2)3PHP7HPHP2HP3HP2H6PH 
SL.7:   PHP4HPH3PHPH4PH2PH2P3HPHP3H3(P2H2)2P3H 
SL.8:   PH2PH3PH4P2H3P6HPH2P2H2PHP3H2(PH)2PH2P3 
SL.9:   (PH)2P4(HP)2HP2HPH6P2H3PHP2HPH2P2HPH3P4H 
SL.10: PH2P6H2P3H3PHP2HPH2(P2H)2P2H2P2H7P2H2 
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