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Abstract. The use of Genetic Algorithms in a 2D Hydrophobic-Hydrophilic 
(HP) model in protein folding prediction application requires frequent fitness 
function computations. While the fitness computation is linear, the overhead 
incurred is significant with respect to the protein folding prediction problem. 
Any reduction in the computational cost will therefore assist in more efficiently 
searching the enormous solution space for protein folding prediction. This pa-
per proposes a novel pruning strategy that exploits the inherent properties of the 
HP model and guarantee reduction of the computational complexity during an 
ordered traversal of the amino acid chain sequences for fitness computation, 
truncating the sequence by at least one residue. 

1   Introduction 

Proteins are made up of an alphabet set of 20 different amino acids [1]. Variations in 
protein conformation depend upon the different combination of amino acids in the 
sequence and their properties [2]. In addition to these variations, a number of chemi-
cal bonds, variations in side-chain, and a number of dihedral angles with a number of 
degrees of freedom within the amino acid chain make the search space for the opti-
mum folding intractable [3]. This provides motivation to design an effective search 
algorithm.  

Initially, the focus was upon computer-based protein folding prediction algorithms 
[4], with Molecular Dynamics (MD) and Monte Carlo (MC) technique being heavily 
employed, though these conformational search methods proved to be too slow. Sub-
sequently, improvements in the speed and efficiency of the search methods became 
the primary concern [4], with Unger et al. [5] designing a Genetic Algorithm (GA) 
implementation that was much faster than the traditional MC technique. Other strate-
gies including, Hydrophobic Zipper (HZ) [6], Contact Interaction methods (CI) [7], 
Constraint Programming [8], have developed statistical approaches successfully but 
only for sequences having limited length around 60 residues or less.  

One basic, yet highly effective [8] representation of lattice models for protein fold-
ing investigation is the 2D Hydrophobic-Hydrophilic (HP) model proposed by Dill 
[9], which uses two letter alphabets, namely H and P. Based on dominating hydro-
phobic force this model has been designed which is well accepted, and used for 
evaluating search strategies. H indicates the hydrophobic amino acid, while P repre-
sents the polar or hydrophilic amino acids. The energy function for the HP-model is 
calculated as follows. If two residues are Topological Neighbours (TN) - indicated by 



Efficient Computation of Fitness Function      347 

the dotted lines in Figure 1, and they are both H then an ε  energy contribution is 
made where ε is having a value -1. The sum of ε in a conformation becomes the fit-
ness function (F) of that particular conformation. 

 

Fig. 1. HP coordinate model, presenting a sequence of amino acids connected by solid line 

Searching for the optimum conformation using an HP model is an NP-complete 
[10] problem, which has motivated researchers to explore alternative solutions such 
as, the application of GAs [2, 11-14]. The search space however, is enormous and 
convergence takes a significant time even for short sequences [5]. Pruning strategies 
to reduce the search space [15] have therefore recently been developed. Caching 
techniques [16-17] within GA has also proved to be able to reduce the computational 
load, further. The paper shows pruning residues or truncated traversal while comput-
ing fitness. The pruning affords the potential to reduce the computational overhead; 
as such a traversal is a repetitive process during the search algorithm, irrespective of 
the dimension (2D or 3D) of structure prediction. Hoque et al. [11-12] have previ-
ously proposed an improved fitness computation, and this paper extends the work to 
show that it is not essential to traverse all the hydrophobic residues in computing the 
fitness computation, which will reduce the computational load further.  

The remainder of the paper is organized as follows. Section 2 explains the nomen-
clature used in the paper, while section 3 describes the fitness computation in the HP 
model. Section 4 defines lemma for the identification of pruning residues and bounds 
while section 5 explores the searching strategies for pruning and presents the new 
pruning algorithm. Section 6 examines the impact of pruning and finally, section 7 
provides key conclusions. 

2   Nomenclature 

An amino acid chain traversal for fitness function computation can either be from a 
higher-numbered residue to a lower numbered residue or vice versa. Throughout this 
paper, the amino acid chain traversal direction is indicated by L2H and H2L to re-
spectively represent travel from a lower to a higher-numbered residue and vice versa. 
In a L2H traversal, after pruning, the highest numbered remaining H residue is repre-
sented by LCRL2H, while LCRH2L indicates the last computable residue in a H2L tra-
versal after pruning. PruneL2H, PruneH2L, MaxPrune are respectively the number of 
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pruned residues in a L2H traversal, the number of pruned residues in H2L traversal 
and the maximum of (PruneL2H, PruneH2L). 

For clarity, the amino acid sequence is represented as a binary string, 
],,,,[ 321 mssssS =  where m is the total number of residues. si can either have a value 

of ‘1’ indicating a hydrophobic residue, or ‘0’ representing a hydrophilic residue. Let 
E be an ordered number set holding the index i of si where si is ‘1’; 
thus ],,,,[ 321 neeeeE = , where n is the number of total hydrophobic residues in S, and 

mn ≤ .  

3   Fitness Computation in the HP Model 
In a 2D HP model, possible protein folding conformations are represented by the 
amino acid chain on a square lattice model forming a self-avoiding walk as shown in 
Figure 1. For a particular sequence, a number of valid conformations are possible, 
with the corresponding Fitness function F defined [2], as the negative of the sum of 
all the TN pairs possible in a particular conformation. Hence, the conformation with 
the highest number of TN pairs has the lowest energy.  

In fitness computation, two possible directions of traversal (L2H and H2L) are 
considered. The amino acid sequence is numbered for ordered traversal, so for exam-
ple, a L2H traversal starts from the first hydrophobic residue (Number 3 in the se-
quence in Figure 1) and searches for the TN amongst its four possible neighbours (in 
2D and six in the 3D representation). A residue is identified if and only if, there is a 
TN from a lower numbered hydrophobic residue to a higher numbered residue. In the 
example in Figure 1, for a L2H traversal, a TN is encountered from residue number 3 
to 6 (3, 6) but not (6, 3), while (12, 25) is a TN, while (25, 12) is not. Thus for a L2H 
traversal, 8 TNs; (3, 6), (3, 24), (6, 25), (7, 12), (12, 25), (13, 18), (18, 25) and (19, 
24) are obtained so F = -8 for the conformation in Figure 1. 

This fitness computation is performed after every crossover and mutation opera-
tions when a GA is applied to the HP model, which makes it an extremely time-
consuming process. Any improvement in the fitness computational cost will therefore 
reduce the overall computational load significantly. 

4   Identification of Pruning Residues and Bounds 
During any ordered L2H or H2L traversal, it is clear that the final hydrophobic resi-
due will not encounter a TN, so the last hydrophobic residue 25 for instance in Figure 
1 will encounter no TN. Similar reasoning applies to a H2L traversal, so the hydro-
phobic residue that is traversing last can always be omitted from the residue list, 
which guarantees at least one fewer hydrophobic residues to be traversed.  

4.1   Pruning Residues 

The objective in this paper is to identify the number of hydrophobic residues that can 
be pruned in any arbitrary sequence during traversal from one end to the other. The 
following lemmas form the basis for this pruning strategy when searching for either 
LCRL2H or, LCRH2L in nH, where nH is the total number of hydrophobic residues in a 
sequence.  
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Lemma 1: To have a TN, the minimum sequence distance between two hydrophobic 
residues must be greater than 2.  

Proof. Let Ex∈ and Ey∈ . If |x-y|=1 then residues are sequentially connected so no 
TN is possible (see in Figure 2(a)). If |x-y|=2, then x and y can at best be diagonally 
positioned so again no TN is possible (see Figure 2 (b)). However, if |x-y|=3 then 
placement of two residues at two non-diagonal lattice points of a unit square is feasi-
ble as shown in Figure 2(c).  

 

Fig. 2. Instances attempting a TN. The residues in (a) and (b) cannot have TN, but x and (x+3) 
in (c) can 

Lemma 2: The distance between any two TN candidates must be odd. 

Proof. Consider any two TN candidates, one hydrophobic residue must be odd while 
the other will be even in the sequence number. Since in a lattice presentation, even 
sequenced hydrophobic residues can only be surrounded by odd sequenced [18] resi-
dues and visa versa, the distance between two candidates of TN is therefore always 
odd.  

To illustrate lemma 2, consider Figure 1. Residue 25 (odd indexed) is surrounded 
by residues 6, 12, 18 and 24 (all of which are even indexed). Since, shaded square 
(odd indexed) is always surrounded by white squares (even indexed) and visa versa. 
It shows that, opposite indexed residues are separated by odd distance.  

Lemma 3: The minimum pruning for any sequence is always 1. 

Proof. Based on traversal direction lemma 1 is further extended. During L2H tra-
versal, for x the TNs (y) can be encountered provided yx < . Hence, if x is the last 
hydrophobic residue then there will be no y, such that yx < . Therefore, visiting the 
last hydrophobic residue is not required and can be pruned. A similar conclusion 
applies to H2L traversal.  

Lemma 4: The maximum pruning for traversal is equal to the total number of hydro-
phobic residue for a particular sequence.  

Proof. If there exists a sequence such that all the hydrophobic residues are an even 
distant apart with respect to each other, then according to lemma 2, there will be no 
TN. Therefore, for such sequences there is no need to traverse any hydrophobic resi-
due.  

4.2   Defining the Pruning Bounds 

For defining the lower bound of pruning, assume a sequence of m residues. For a 
number, r is such that mr ≤ , and we have the rth residue as the last hydrophobic 
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residue in a sequential traversal. Also, if the rth and (r-3)th residues are hydrophobic 
but (r-1)th and (r-2)th are hydrophilic, then from lemma 1, TN pair of  rth or last resi-
due with the shortest distance will be the (r-3)th residue. Using lemma 3, we can thus 
prune the rth single residue so the minimum pruning for any sequence is always 1.  

To develop an upper-bound for this new pruning strategy, consider a sequence in 
which all the hydrophobic residues are either only even or odd indexed. From 
lemma 4, there will be no TN at all for these residues, so every hydrophobic residue is 
pruned.  

Hence, the pruning bound is [1, n), where n is the number of hydrophobic residues. 
For short sequences, pruned traversal for fitness computations will always be signifi-
cant, while for relatively larger sequences (having length around 100 residue or more) 
with trivial patterns, such as mostly odd indexed or even indexed residues at a loca-
tion preferably at the start or at the end of the sequence as discussed for upper-bound, 
will be extremely significant for pruned traversal.  

5   Pruning Algorithms 
Lemmas 1 and 2 (section 4) allow us to define the following two functions, which are 
used in the pruning algorithm-1 (given below) to detect LCRL2H or LCRH2L. 

 

Algorithm 1. To find maximal truncated traversal sequence 

Input: Sequence S and  Traversal Direction TD. 

Output: Number of pruned residue. 

Step 1: If  TD = L2H then  
Step 2: Compute 

ae and 
be , respectively maximum odd, maximum even in E.  

Step 3: )}(),({ of maximum 
222 bfafLCR
HLHL LCRLCRHL =  

Setp 3:  Return: PruneL2H = (n – LCRL2H)  
 else  
Step 4: Compute 

ue and 
ve , respectively minimum odd, minimum even in E. 

Step 5:  )}(),({ of minimum 
222 vfufLCR
LHLH LCRLCRLH =   

  Return: PruneH2L = (LCRH2L – 1)  
 endif 

The Algorithm-1 assumes that both the sequence and the traversal direction are 
given as input and it will return number of pruned residue. Depending on odd and 
even hydrophobic residue groups in a sequence, the function )(

2
xf

HLLCR  is invoked 

twice (Step 3), with x=a and x=b, indicating the index of the maximum odd and 
maximum even numbered hydrophobic residue (Step 2) respectively. With x=a, the 
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function will return an even indexed candidate of LCRL2H and with x=b, the function 
will return an odd indexed candidate of LCRL2H. The maximum return of the two is 
the LCRL2H. Similarly we, invoked function )(

2
xf

LHLCR  (Step 5) to detect the LCRH2L, 

where x is being assigned the indices of first odd and first even hydrophobic residues 
(Step 4) and in this case the minimum of the two return is taken. These two functions 
help choosing traversal direction to have maximum pruning from either direction.  

For example, in Figure 1, S = [0010011000011000011000011] and m = 25, that is, 
E = [3, 6, 7, 12, 13, 18, 19, 24, 25] and n = 9. The value of ae , be , ue and ve  are 

respectively 25, 24, 3 and 6. According to Algorithm 1, (LCRL2H = 7) as maximum of 
)}7)8((),6)9({(

22
==

HLHL LCRLCR ff . Similarly, (LCRH2L = 4) as minimum of 

)}5)2((),4)1({(
22

==
LHLH LCRLCR ff . So, PruneH2L = 3, PruneL2H = 2, hence MaxPrune = 3. 

Therefore, the traversal direction is H2L will provide the MaxPrune and it saves fit-
ness computation traversal by 33.33%. 

6   Simulation Results 

For each sequence length, the occurrence frequency of H (the total number in a se-
quence) is considered as a percentage of sequence length. So for a sequence length of 
1000 and having 20 H residues means H% = 20. To identify the impact of H%, it is 
varied from between 10% to 90% in steps of 10. Since these residues are randomly 
distributed, for each value of H%, the average improvement is computed from 1000 

simulation runs with the measure of pruning defined as ,100%×=
n
kI  where n is the 

total number of hydrophobic residues in a sequence and k the number of pruned hy-
drophobic residues from that sequence. To establish the significance and impact of 
pruning on computational throughput, simulations were undertaken using both ran-
domly generated sequences for analyzing robustness and popular benchmark se-
quences [19] used by the broader research community for testing the practical impact. 
a) Randomly generated sequences:  

The studies are performed to investigate the impact upon both the sequence length 
as well as the occurrence of H in the sequence. For this purpose, the length is var-
ied from 20 till 1000 with a step increase of 20. It can be seen from Figures 3 and 
4(a) that the significance of pruning depends on the occurrence frequencies and 
pattern of H and P in the sequence. It is observed that the lower the frequency of 
H in a sequence, the higher the pruning improvement I. Also, it is observed that 
the pruning performance is higher for shorter sequences which are less than 
around 100 residues. Figure 4(b) shows the maximum, average and minimum 
percentage ‘improvement’, which also reveals that for a sequence with a relatively 
lower number of hydrophobic residues, the line showing maximum improvement 
(%) has higher value. For any sequence, the minimum number of pruned residue 
is at least 1, so the significance of the minimum pruning decreases uniformly with 
increasing numbers of hydrophobic residues in a sequence. 
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b) Benchmark sequences [19]:   
The pruning algorithm was next applied to a selection of the 2D benchmark se-
quences given in Table 1. The Table also shows the corresponding improvement 
in results with respect to all hydrophobic residue traversal thus establishing the 
practical significance of the pruning technique presented here in this paper.  
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Fig. 3. Percentage of H and corresponding pruning improvement (%). (a) Sequence length 20 
to 100, step 20. (b) Sequence length 200 to 1000, step 200 
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Fig. 4. (a) Sequence length and corresponding pruning improvement (%). (b) Improvement 
I(%) comparing maximum, average and minimum 

7   Conclusions 

This paper has presented a novel pruning strategy for Hydrophobic-Hydrophilic (HP) 
model to reduce the computation overhead during an ordered traversal of amino acid 
chain sequences. The new approach guarantees a minimum pruning for any sequence, 
thereby ensuring a speed up in the search process for protein folding prediction using 
GA. A series of lemma have been postulated in the development of the theoretical 
basis of this new strategy and simulation results for both randomly-generated and 
benchmark sequences confirm the improvement achieved. While the focus of the 
pruning algorithm has been on a 2D HP model, the strategy can be extended in a 
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straightforward manner to a 3D HP model. Also, our algorithm can be easily ex-
tended to be embedded within current caching approaches [16-17], thereby providing 
a further reduction in the computational load.  

Table 1. Pruning results for 2D benchmark sequences. Pruning improvement is shown respect 
to all hydrophobic residues traversal 

Se
qu

en
ce

 
L

en
gt

h 
T

ot
al

 #
 o

f H
 

M
ax

-P
ru

ne
 

Im
pr

ov
em

en
t 

(%
) 

T
ra

ve
rs

al
 

D
ir

ec
ti

on
 

Se
qu

en
ce

 
20 10 3 30.00 H2L HHHPPHPHPHPPHPHPHPPH 

20 10 2 20.00 L2H / H2L HPHPPHHPHPPHPHHPPHPH 

24 10 2 20.00 L2H / H2L HHPPHPPHPPHPPHPPHPPHPPHH 

25 9 2 22.22 L2H PPHPPHHPPPPHHPPPPHHPPPPHH 

36 16 2 12.50 H2L PPPHHPPHHPPPPPHHHHHHHPPHHPPPPHHPPHPP 

45 27 3 11.11 H2L PHHHPHHHPPPHPHHPHHPPHPHHHHPHPPHHHHHPHPHHPPHHP 

48 25 3 12.00 L2H PPHPPHHPPHHPPPPPHHHHHHHHHHPPPPPPHHPPHHPPHPPHHHHH 

50 24 2 8.33 L2H / H2L HHPHPHPHPHHHHPHPPPHPPPHPPPPHPPPHPPPHPHHHHPHPHPHP
HH 

57 30 2 6.67 L2H HPHHHPHHHPPHHPHPHHPHHHPHPHPHHPPHHHPPHPHPPPPHPPH
PPHHPPHPPH 

60 43 3 6.98 L2H PPHHHPHHHHHHHHPPPHHHHHHHHHHPHPPPHHHHHHHHHHHHP
PPPHHHHHHPHHPHP 

64 42 3 7.14 L2H / H2L HHHHHHHHHHHHPHPHPPHHPPHHPPHPPHHPPHHPPHPPHHPPHHP
PHPHPHHHHHHHHHHHH 

102 37 2 5.41 H2L PHHPPPPPHHPPHHPHPPHPPPPPPPHPPPHHPHHPPPPPPHPPHPHPPH
PPPPPHHHPPPPHHPHHPPPPPHHPPPPHHHHPHPPPPPPPPHHHHHPP
HPP 

123 47 5 10.65 L2H PPHHHPHPPPPHPPPPPHHPPPPHHPPHHPPPPHPPPPHPPHPPHHPPPH
HPHPHHHPPPPHHHPPPPPPHHPPHPPHPHPPHPPPPPPPHPPHHHPPPP
HPPPHHHHHPPPPHHPHPHPHPH 

136 50 2 4.00 L2H / H2L HPPPPPHPPPPHPHHPHHPPPPHPHHHPPPPHPHPHHHHPPPPPPPPPPP
HPPHPPPHPHHPPPHHPPHPPHPHPHPPPPPPPPHPPPHHHHHHPPPHH
PPHHHPPPHHPHHHHHPPPPPPPPPHPPPPHPHPPPP 
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