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Abstract

Fitness computation after each crossover or 
mutation operation in Genetic Algorithm (GA) 
requires computational time that increases with the 
increasing length of the chromosome. In this paper, 
an efficient GA is proposed for protein folding 
prediction based on the Hydrophobic-Hydrophilic 
(HP) model. The partial fitness of the parent 
computed from one end of sequence till crossover or 
mutation point is utilized for the computation of the 
fitness of the child. The calculated value of the 
partial fitness is stored with the corresponding 
chromosome. Although the approach requires 
additional memory for each hydrophobic residue of 
each chromosome, the computation time is reduced 
significantly which is more important than the 
memory overhead.

Keywords: Partial fitness, genetic algorithm, 
protein folding, hydrophobic-hydrophilic residue. 

1. Introduction 

The prediction of protein folding pathway from a 
sequence of amino acid is still an unsolved problem 
[8]. There are several forces affecting the protein 
folding [5]. Some forces are very strong and others 
are weak. Hydrophobicity is one of the strongest 
forces. Based on this force groupings of hydrophobic 
(H) or non-polar and hydrophilic or polar (P) is done 
[1]. H residues tend to form the protein core as they 
are repelled by water. But P residues are attracted to 
water and tend to be outside of the protein core. 
Based on this property, the HP model was introduced 
[3]. In a 2D HP model, a possible conformation is 
represented by placing the amino acid chain on a 
square lattice model having a self-avoiding walk. 

Sequence (A) of Figure 1 shows an HP model having 
a valid (self-avoiding walk) conformation.  

Protein folding prediction in the 2D HP model 
being a NP-complete problem [2], a randomised 
search scheme like Genetic Algorithm (GA) is used 
for the HP model [4][7][9][10]. New solutions are 
achieved in GA through the operations of selection, 
crossover and/or mutation. The genetic algorithm 
requires large numbers of samples from the solution 
space and each new solution has to be evaluated by 
computing its fitness. This approach needs significant 
computational time that increases with the increasing 
length of the chromosome. Thus, any improvement in 
the fitness computation will increase significantly the 
total number of solutions that can be evaluated within 
a given time. In this paper, we show how efficiency 
increases by storing the partial fitness cumulative 
sum in an ordered traversal of the conformation. 
After crossover or mutation for the new 
conformation, fitness computation is made more 
efficient by utilizing partial fitness of its ancestor. 

The remainder of the paper has been organized as 
follows. In section 2, efficient fitness computation 
has been discussed. Section 3 gives the mathematical 
analysis. Crossover operation and partial fitness 
computation are analyzed in section 4, while section 
5 deals mutation. Simulation results are given in 
section 6. Finally, section 7 concludes the work. 

2. Efficient fitness computation 

A native conformation for a string of amino acids 
is the one which has the lowest energy and is 
achieved when the numbers of hydrophobic-
hydrophobic (H-H) pairs, called topological 
neighbour (TN), is maximized. The TN, by 
definition, is that adjacent H pair that has unit lattice 
distance but is not sequential or is not connected. For 
fitness computation TN counting is started from 
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hydrophobic residue number one and we attempt to 
find its four TN by comparing with other residues. 
Next, we go for the second hydrophobic residue and 
search for any of its TN traversing this way till the 
last hydrophobic residue is reached. The fitness is 
then equal to the total number of TN encountered 
multiplied by (-1). A crossover example [9] is shown 
in Figure 1 along with the fitness function 
computation. A similar [9] example for mutation is 
shown in Figure 3. Whether there is a crossover or a 
mutation, the fitness has to be computed each time. 
As the fitness computation is a very frequent 
operation, optimization of fitness computation 
process can reduce the time required for fitness 
computation which in effect will reduce the total time 
for overall protein folding prediction. 

When the fitness is calculated, a particular 
direction for traversal can be followed say, 
computing from either a higher to lower (H2L) 
sequence number or lower to higher (L2H) sequence 
number, rather than counting the TN twice and then 
dividing the total by 2. Further, if a cumulative sum 
for each hydrophobic residue is stored, the available 
Partial Fitness (PF) computation after each 
hydrophobic residue can be utilized for optimization 
of fitness computation. In this paper, we will follow 
the L2H approach still maintaining the generalization 
of approach. 

3. Mathematical analysis 

Let us define the term Operation Point (OP). In 
case of mutation OP is the lower ordered 
hydrophobic residue nearest (or at) the mutation 
point while for crossover, OP is the lower order 
hydrophobic residue nearest to the crossover area. 
For crossover example in Figure 1, residue 14 is the 
OP and for mutation shown in Figure 2, residue 9 is 
the OP. To construct a new L2H based array of 
partially computed cumulative sum of fitness for a 
new chromosome, part of the partial fitness array 
from lowest order residue to OP is reconstructed 
every time and the remaining part is copied from one 
of the parents and updated with the change calculated 
at OP. If we assume the hydrophobic residues are 
equally distributed among hydrophilic residues, then 
reconstruction time (

RT ) occurs approximately on an 

average for 50% of the hydrophobic residue 
sequence length. The remaining partially computed 
segments are copied and modified on an average 
50% of the time. The time will be referred as partial 
computation ( PT ). Although PT  will have some 

overhead, it is certainly less than RT . The overhead of 

the PT  is for copying the partial fitness result from 

one of the parent and then updating.  
So, if all the residues are equally probable for 

being randomly selected for mutation or crossover, 
an improvement of nearly 50% on an average is 
expected. For computing sequence of length n -

n
RT  - Reconstruction time  
n

PT  - Partially computation time.  
So, time required for full computation of a sequence  
of length n is n

RT .Partial computation of sequence of  

length n is equal, 
n

PT = 21 n
P

n
R TT              (1) 
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Since all the residues are equally probable of being 
selected for mutation or crossover then on an average 
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As the fitness computation is linear [6],  
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The value of T  will be very low since 2
n

PT is 

required in copying and updating (addition) whereas 
n

RT  involves searching, comparison and addition. 

Hence, %50I . The value of T  has been verified 

to be of low magnitude by the simulation results 
given in section 6. 

The memory overhead (MO) order is 
approximately proportional to number of total 
residues in the protein. For our algorithm, if total 
number of hydrophobic residue is N, the memory 
overhead for population size (P) in GA can be given 

Proceedings of the Fourth International Conference on Hybrid Intelligent Systems (HIS’04) 
0-7695-2291-2/04 $ 20.00 IEEE 



by, MO = O (NP). For example, for typical values of 
P=200 and N=300 the overhead is negligible. 

4. Crossover operation and partial fitness 
computation

In crossover operation, at least two ancestors are 
involved. Partial fitness can be copied from one of 
the ancestor depending on the location of the 
crossover position and on the remaining segment of 
the ancestor. 

4.1. Utilization of partial fitness after 
crossover 

Consider Figure 1 which shows sequence (A) 
having a fitness value equal to -5 and sequence (B) 
having a fitness value of   -2. Performing crossover 
immediately after residue number 14 and then 
following with rotation, sequence (C) is obtained. 
The fitness of the resulting configuration is 
calculated and found to be equal to -9. So, resultant 
child after crossover with fitness value -9 is better 
than its parent. 

Next, the focus of proposed approach is to obtain -
9 with the help of parents’ fitness function rather 
than depending on the information from sequence (C) 
only.

Computation of the TN in L2H order has been 
indicated in Figure 2 by arrows. As shown in 
sequence (C) of Figure 2, the part of the protein 
sequence crossed and taken from (B) (indicated by 
solid arrows) will always be retained for the H-H 
topological neighbour count (with L2H order), since 
they need not be searched for TN of lower order 
sequences. However, the part of sequence crossed 
and taken from (A) (indicated by dotted arrows) has 
changed and additional neighbours appear as 
indicated by dot-dashed curved arrows in sequence 
(C) of Figure 2. 

4.2. Crossover example 

Consider the sequence (A) of Figure 1. There are 
10 hydrophobic residues. To build a list, an array of 
size 10 will be required. Based on the reasons given 
in section 3 earlier, Partial Fitness (PF) computation 
for sequence (A) of Figure 1 will is as follows. In the 
Table, Ri is the ith residue and PFi is the partial fitness 
at ith residue. 
Table 1. Partial fitness for seq. (A) of Fig. 1
Ri 1 3 6 7 9 12 14 15 18 20 
PFi -1 -2 -2 -3 -5 -5 -5 -5 -5 -5 

Fitness, F= PF20 = -5 

Partial fitness of sequence (B) of Figure 1 is as 
follows. 

Table 2. Partial fitness for seq. (B) of Fig. 1
Ri 1 3 6 7 9 12 14 15 18 20 
PFi 0 0 0 0 0 0 0 -2 -2 -2 

So, Fitness, F= PF20 = -2 

The crossover operation is done and the sequence 
(C) of Figure 1 is obtained. We now implement PF 
approach for computing the fitness of sequence (C) 
of Figure 1.  

From immediately after crossover point (i.e. 
residue 15) till the end residue 20, the conformation 
remains unchanged. This is because residue 15 needs 
to check for TN with higher number, namely 18 and 
20, and so on. Since the structure remains the same, 
this required information is taken from sequence (B) 
of Figure 1 where it was already computed.  

The modified steps for efficient fitness calculation 
for sequence (C) of Figure 1 are as follows. 
Step1: Compute PF for residues 1 to 14.  

Ri Seq.# 1 3 6 7 9 12 14 
PFi PF -2 -3 -3 -5 -7 -7 -7 

Step 2: Compute the change at 14 as follows. 
Change14 = PFStep1, 14 - PFB, 14 = (-7) – 0 = -7  

Step 3: Using the available PF of residues from Table 
2 for residues 15 till 20 and adding the Change14

found in step 2 to the existing values of the residues, 
we get 

Ri 15 18 20 
PFi (-2)+(-7) (-2)+(-7) (-2)+(-7) 

Step 4: The following fully completed Table 3 for 
sequence (C) of Figure 1 is then built. 

Table 3. Efficiently computed (PF) for seq. 
(C) of Fig. 1

Ri 1 3 6 7 9 12 14 15 18 20 
PFi -2 -3 -3 -5 -7 -7 -7 -9 -9 -9 

5. Mutation and partial fitness 
improvement

In mutation operation, only one ancestor is 
involved. Partial fitness can be copied from the 
ancestor depending on the mutation point. The details 
are given below. 
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5.1. Utilization of partial fitness after 
mutation 

The mutation operation may be considered on the 
same lines as crossover operation. As the first 
mutation step, residue 11 of sequence (A) of Figure 3 
is randomly chosen for rotation. It is randomly 
rotated by 180  and the configuration of (B) is 
obtained. Fitness is computed for (B) and found = -9.  

As the sequence is traversed from 1 to 20, the TN 
is counted only for lower number to higher number, 
for example indicated by arrow direction in Figure 4. 
Starting at 1, one TN is found for residue 1 to 6. 
Then at 3, (3, 6) is found so by cumulative sum, PF3

= PF1 + (-1) = -2, etc. In L2H, 1 to 6 is computed but 
6 to 1 is not computed, also 3 to 6 is computed but 
not 6 to 3 and so on.  

Consider a mutation occurring at residue number 
11 as shown in Figure 4. Since we are following L2H 
order for fitness computation, the hydrophobic 
residues after 11 will certainly not encounter any 
change of TN and will remain the same as it was in 
sequence (A) of Figure 4. So the PF computation for 
this unchanged part can be directly obtained from its 
ancestor and updated without recomputing by 
traversing the sequence. This technique speeds up the 
computation and improves the overall fitness 
computation efficiency. 

5.2. Mutation example 

An example for mutation is now considered. 
Partial fitness (PF) for sequence (A) of Figure 3 the 
PF will be computed as follows. 

Table 4. Partial fitness for seq. (A) of Fig. 3
Ri 1 3 6 7 9 12 14 15 18 20 
PFi -1 -2 -2 -2 -2 -2 -2 -4 -4 -4 

So, Fitness, F= PF20 = -4 

The mutation point residue number 11 is randomly 
chosen. For the hydrophobic residues from 1 to 9, 
recalculation is required and for hydrophobic 
residues from 12 to 20, the change can be merely 
copied and updated. The steps are given below. 

Step1: Compute PF for residues from 1 to 9   
Ri Seq.# 1 3 6 7 9 
PFi PF -2 -3 -3 -5 -7 

Step 2: Compute the change at 9 as 
Change9 = PFStep1, 9 - PFA, 9 = (-7) – (-2) = -5  

Step 3: Using the PF of residues 12 till 20 (part of 
Table 4) and adding the Change9 found in step 2 to 
the existing values of the residues, we get  

Ri 12 14 15 18 20 
PFi (-2)+(-5) (-2)+(-5) (-4)+(-5) (-4)+(-5) (-4)+(-5) 

Step 4: The Final Table 5 for sequence (B) of Figure 
3 is then developed. 

Table 5. Efficiently computed PF values seq. 
(B) of Fig. 3
Ri 1 3 6 7 9 12 14 15 18 20 
PFi -2 -3 -3 -5 -7 -7 -7 -9 -9 -9 

6. Simulation results 

We construct the GA on HP model for protein 
folding prediction and measure the time for both the 
full fitness computation and the partial fitness 
computation strategies. The partial fitness 
computation is done by the help of additional 
memory (array). We performed simulations for 
amino acid chain length from 20 to 335. For the 
purpose of this analysis, every chain was randomly 
filled with hydrophobic residues and hydrophilic 
residues. The result is shown in Figure 5.  The data 
has been plotted from length 20 to 335. Protein 
length above 150 is observed to be correlated. Using 
curve fitting, it is found that a polynomial of order 
one fits the data in the best manner. The values for 
slope and constant are found to be 0.0125 and 
41.5145 respectively giving the polynomial equation 
as 5145.410125.0 xy  Using typical value of 

protein length x = 540, the predicted improvement is 
48.26%. The improvement I is approximately 48% 
from experimental result. Hence from equation (6), 

T  = 0.5-I  0.5-0.48 = 0.02. 

7. Conclusions 

In the paper, an efficient algorithm is presented to 
improve the computational speed of the GA. With 
very limited increase in memory the partial fitness is 
stored in cumulative manner and utilized by the 
descendent. In the proposed approach, full fitness 
computation is required only for the initial population 
as they will have no parents to take advantage of 
copying computed partial fitness. The paper presents 
only single point crossover and single point mutation 
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but the approach can be easily extended to multiple 
crossovers or mutations. 
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Figure 1. An example of crossover application. Black-square indicates hydrophobic residue and 
white-square indicates hydrophilic residue. Pairs of structures are randomly cut and pasted with 
the cut point randomly chosen after residue 14. The first 14 residues of (A) are joined with the 
least 6 residues of (B). A randomly chosen 270  rotation is applied at the joint to achieve the 
compact structure in (C), where fitness = -9.

Figure 2. TN before and after crossover. TNs are indicated by dotted arrow in (A), solid arrow in 
(B). As a result of crossover in (C), newly achieved TNs are indicated by dot-dashed arrows.
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Figure 3. An example of mutation operation. Residue number 11 is chosen randomly as the pivot 
for move. A 180  rotation brings the structure in (A) with fitness value of -4 to structure with 
fitness value of -9 in (B). 

Figure 4. TN before and after mutation. TN has been indicated by dotted arrow in (A) from 
sequence number 1 to mutation point and for the remainder of the part these are indicated by 
solid arrows. Resultant (B) after mutation has new TN indicated by dot-dashed arrows.
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Figure 5. Protein length vs. improvement graph.
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