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Abstract

The protein folding problem is a minimization 
problem in which the energy function is often regarded 
as the fitness function. There are several models for 
protein folding prediction including the Hydrophobic-
Hydrophilic (HP) model. Though this model is an 
elementary one, it is widely used as a test-bed for 
faster execution of new algorithms. Fitness 
computation is one of the major computational parts of 
the HP model. This paper proposes an efficient search 
(ES) approach for computing the fitness value 
requiring only O(n) complexity in contrast to the full 
search (FS) approach that requires O( 2n ) complexity.  
The efficiency of the proposed ES approach results due 
to its utilization of some inherent properties of the HP 
model. The ES approach represents residues in a 
cartesian coordinate framework and then uses relative 
distance and coordinate polarity to reduce complexity.  

Keywords: HP model, fitness function, improved 

computation, relative distance, relative polarity. 

1. Introduction 

There are 20 different amino acids that lead to the 

formation of different proteins. Thus, each protein is 

essentially a sequence of one-dimensional chain of 

amino acids that adopts a specific folded three 

dimensional shape called its native conformation. Each 

shape provides valuable clues to the protein function. 

One reason for the significant interest in protein 

folding problem in general and efficient techniques in 

particular is the large amount of genetic information 

produced by the Human Genome Project. Because of 

the importance and computationally intensive nature of 

this problem, it has been identified as a National Grand 

Challenge in bio-chemistry in the United States 

(Lamont). Not only are the research efforts directed 

towards determining the in-vivo structures of naturally 

occurring proteins but efforts are also going on for 

promoting faster protein design than is currently 

possible. The latter is referred to as the ‘inverse protein 

folding problem’. 

It is widely believed [10] that the native 

conformation of a protein is determined by the amino 

acid sequence of the protein under several regular 

forces. Amino acids can be categorized as either 

positively or negatively charged, side chain size as 

tiny, small or large, aliphatic or aromatic etc. One of 

the property that affects folding strongly is known as 

hydrophobicity, based on which the amino acid 

residues can be divided into two groups. Hydrophobic 

(H) or non-polar residues stay away from water 

(water-hating) [1], and tend to be inside the protein 

core while the hydrophilic or polar (P) residues are 

attracted towards water (water-loving), and hence tend 

to remain outside the protein core. 

Based on this property, the HP model was 

introduced  [3] that has been used by many researchers 

for protein folding prediction. A native conformation 

for a string of amino acids is the one which has the 

lowest energy and is achieved when the numbers of 

hydrophobic-hydrophobic (H-H) pairs, called 

topological neighbour (TN), is maximized. The TN, by 

definition, are those adjacent H pairs that have unit 

lattice distance but are not sequential or are not 

connected. Further, in a HP-model, the fitness function 

is most frequently computed value for protein structure 

prediction. In most computational search schemes, 

such as those involving genetic algorithms (GA), the 

fitness is computed in every iteration, for each 

chromosome for the selection of a better seed 

[6][11][12]. Thus, faster and quicker computation of 

these functions will make the search process fast and 

efficient. Moreover, as protein folding in the HP model 

is NP-complete [2], any improvement in the fitness 

computation will also have a corresponding impact on 
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the overall performance of the GA as well. Several 

approximation algorithms have also been approached 

[5][8][9][10]. 

This paper proposes an efficient search algorithm 

for protein folding problem. We study this problem of 

improving the computation of the fitness function in a 

two-dimensional (2D) square lattice. The remainder of 

the paper is organized as follows. In Sec. 2, the HP 

model and formulation of amino acid chain string is 

described together with the full search (FS) approach 

to compute the fitness value. In Sec. 3, Lemmas which 

help to improve the FS are proposed and issues related 

efficient search (ES) strategies are discussed. In Sec. 4, 

computational complexity analysis of ES is presented. 

Finally, conclusions are given in Sec. 5. 

2. HP model 

For any given amino acid sequence, different 

orientations are possible. As mentioned earlier, the 

higher the number of TN pairs (i.e. by definition, the 

lower the fitness function) for any orientation, the 

closer the confirmation will be to the desired folding. 

2.1. HP model and fitness function 

In a 2D HP model, the orientation is represented by 

placing the amino acid chain on a square lattice model 

and then forming a self-avoiding walk. Figure 1 shows 

an HP model where the hydrophobic and hydrophilic 

residues are represented as black and white squares 

respectively. A solid line connecting the squares 

indicates the sequence of the amino acids chain while 

the dotted line indicates TN pairs. 

The following approach, given in [4], has been 

used in the proposed work for measuring the fitness 

function. 

1) Initialize fitness function F=0 

2) Compute and identify all possible pairs of 

TN in the HP model  

3) For each of these pairs, decrement fitness 

function, F 

To compute F, the string S is traversed to determine 

the number of TN pairs in the HP model. It can be seen 

that in Figure 1, the number of such pairs is 9 and the 

value of fitness function is therefore equals to -9. 

In a 2D placement, the residues of the string can be 

represented by their cartesian coordinates (x, y). For 

the sake of simplicity and without loss of generality, it 

is assumed that the starting hydrophobic residue 1 is at 

(0, 0) [see Table 1]. 

2.2. Binary string formulation 

For computational ease, we can represent the 

hydrophobic and hydrophilic residues as binary ‘1’ and 

binary ‘0’ respectively. Thus, the chain of amino acid 

sequence given in Figure 1 can be represented as 

]01011001011010011010[S . A binary ‘1’ at an 

odd index is called an odd-1 and at an even index is 

called even-1 [9]. 

Table 1. Coordinates and relative lattice 
distance 

1 3 6 7 9 12 14 15 18 20 

x 0 1 0 -1 -2 -3 -2 -2 -2 -1 

y 0 1 1 1 2 2 1 0 -1 0 

 2 1 2 4 5 3 2 3 1 

For any string, there is a fixed range of values of the 

fitness function, F given as  0, -1, -2, …, -M. The 

maximum value M is given as 

])[],[min(*2 SOSEM             (1) 

where,    O[S] = number of odd-1 in the string 

E[S] = numbers of even-1 in the string 

It is assumed that neither of the end points in the 

string are hydrophobic residues. It is obvious that, on a 

square lattice, an even-1 will always be adjacent to 

odd-1. Hence, each element in the string S (except the 

120

Hydrophobic residue, Hydrophilic residue

Fitness Value =-9  

Figure 1. An HP model comprising of 
hydrophobic and hydrophilic residues.

Row 1: Hydrophobic residue index with reference to 
Figure 1.

Row  4: Relative lattice distance respect to residue 
at (0, 0).
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two end points) can have a maximum of two 

topological neighbours. 

The string S  {0, 1}m can be represented as binary 

string, ],,,,[ 21 ms ssssS . Let us assume S  to be 

the string having n hydrophobic residues only, i.e. 

],,,,[ 321 nssssS . The string S  will be a 

subset of S. The relative lattice distance, di is measured 

from s 1 to any s i,

)2(, niwhereyxd iii
. The values of d 

for various residues are shown in the last row of Table 

1. Note that only non-diagonal lattice distance is 

assumed so that distance computation is always integer 

based. Further, the index of the hydrophobic residue in 

string S  is the same as the index given in the original 

string S. Thus, index of a residue, say 3, remains 3 in 

both S  and S. These index values are shown in the top 

row of Table 1. 

3. Full search (FS) approach 

In the full search (FS) approach to compute the 

fitness function F, s 1 is first compared with s 2, s 3 …

s n; then s 2 is compared with s 3, s 4 …, s n, and so on. 

During comparison between (s i, s j), where i  j, if the 

(non-diagonal) distance = the unit lattice, then F is 

decremented (F=F-1). The initial value of F is assumed 

as F=0. The complete steps involved in the FS 

approach are given in Algorithm 1 below.  

Algorithm 1. Full search approach

Hence, if the total number of hydrophobic residues 

is n, then with FS approach, the computation of F 

requires a time complexity of O( 2n ).

4. Improving FS time complexity 

By considering the even and odd index positions of 

a ‘1’ in the string S, ‘1’ can be grouped as either even-
1 and odd-1 according to whether the index number. 

The orientation of the members of these groups elicits 

some useful properties which can be exploited to 

reduce time complexity. 

4.1. Toward an efficient search approach 

The following series of lemma are presented which 

form the basis for constructing an efficient search (ES) 

approach.  

Lemma 1: For any particular lattice point, the 

relative lattice distance of any odd-1 and any even-1
will never be the same.  

Proof: In a square lattice, an odd-1 can only be 

adjacent to even-1 and vice versa. Adjacent odd-1s 

differ from an even-1 by minimum of one lattice 

distance. So, the distance of even-1 in a particular 

lattice and the adjacent odd-1 with respect to that 

lattice point will always differ by an odd number by 

induction. 

Lemma 2: From any lattice point, if the relative 

lattice distance for any odd-1 is even then, all the odd-
1 will have even lattice distance and all even-1s will 

have an odd lattice distance with respect to that point. 

Proof:  Using Lemma 1, the distance from a 

particular lattice point to any odd-1 and from that 

particular lattice point to any even-1 differ by odd 

number. Thus if the distance of particular point from 

an odd-1 is odd then the distance of any even-1 from 

that particular point is even and visa versa. By 

induction, this extends to all odd-1s and even-1s.

Lemma 3: The relative distance between any two 

odd-1s and also between any two even-1s is always 

even. 

Proof: Using Lemma 2, from any particular point if 

any odd-1 has an even distance, then all odd-1s will 

have an even distance. The same is also true for any 

two even-1s.

To calculate the relative distance (i.e. last row of 

Table 1) for all hydrophobic residues with respect to a 

particular hydrophobic residue (i.e. s 1), the following 

conditions are given. 

a) Various subsets (called equidistant subsets) 

are formulated comprising of residues which 

are equidistant from the reference residue (i.e. 

s 1). Using Lemma 1, odd-1s and even-1s fall 

into different equidistant subset. 

b) Using Lemma2, if a particular point is odd-1
then all even-1s will be odd distance from that 

point and all odd-1s will be even distance. 

c) Using Lemma 3, for any hydrophobic residue, 

some odd-1s and some even-1s are 

alternatively separated on the basis of relative 

distance.  

Precondition:  
 Fitness function F=0; S  (= s 1, s 2, s 3 …, s n );

Coordinates of the hydrophobic residue of S ;

Post condition: Fitness value F. 

1.   FOR  i (1: n-1) DO 

2.       FOR j (i+1 : n) DO 

3.        Compute distance d between (s i, s j)

4.          IF |d| = 1 then decrement F 

5.       ENDFOR  

6.  ENDFOR  
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d) To compute F, odd-1s are only compared with 

the next adjacent even-1 (if it exists) which 

are separated by unit relative distance.  

Given the above four conditions, the searching 

process can be made more efficient by implementing 

the following steps. 

1. The comparison of si with sj is redundant, 

if 1ij , since these two residues are 

connected.  

2. Only non-diagonal distances are computed 

thus avoiding the necessity for any floating 

point operations. 

3. Use the following polarity property (given in 

Sec. 4.2 below) based on polarity and relative 

distance of a residue. This property eliminates 

the redundant comparisons because the 

various equidistance groups are further 

subdivided with respect to their polarities as 

explained below. 

4.2. Polarity property 

To make the search efficient, the polarity (sign) of 

the coordinates of residues is exploited for matching 

purposes. The Figure 2 below shows the polarity 

consideration for the residues with respect to s 1 .The

symbols (+, -, ) will be used to indicate polarity, where 

+ and – denote the relative signs of (x, y) with respect 

to s 1 and  defines no polarity i.e. it will be matched as 

don’t care provided the polarity of the other coordinate 

of a residue matches exactly. 

s 1 ( , )

(+, +) 

(+, -) (-, -) 

(-, +) 

( , +) 

(+, )(-, )

( , -) 

Thus both (+, -) and (+, ) as well as (+,+) and (+, )

are matchable while (+, ) and ( ,+)  or, (+, ) and ( , -) 

are examples of non matchable pairs. Similar pairs, for 

example (+, +) and (+, +) or, (-, +) and (-, +) are 

always matchable. In other words, it can also be seen 

from Figure 2, residues with similar polarity will 

match with each other as well as with those residues 

which are located at its two adjacent positions. 

4.3. Scheme for polarity encoding 

For computational ease, an encoding scheme for 

identifying polarity is also implemented. As shown in 

Figure 3, the polarities are encoded as three binary 

numbers. Two residues are considered matched when 

the encoding binary number of a residue finds either a 

same matching number or any of its two adjacent 

neighbours for another residue. For example, 010 is 

matchable with 010 and also with its two adjacent 

neighbours 011 and 001. By adding 001, the anti-

clockwise immediate neighbour is found and by 

subtracting 001, the immediate clockwise neighbour is 

found. The operation is basically MOD 2 addition and 

subtraction. 

4.4. Efficient search (ES) approach 

In the ES approach, the relative distance and 

polarities of all hydrophobic residues with respect to 

s 1 are calculated during the first scan. Let di be the 

distance of the ith residue from s 1. Then for any two 

residues s i and s j; there will be an H-H match if       |di

– dj|=1 and also if the polarity of s i and s j is matched. 

The steps are summarized in the following Algorithm 

2.

The following Table 2 is basically derived from 

Table 1, by considering the polarity of the (x, y) 

coordinates of s 1  S . For those values where either 

x=0 or y=0, the polarity is counted as ‘ ’ instead of 

‘+’. Hence, in Table 2, it is observed that 6 ( , +) and 3 

(+, +) have a match, while 6 and 7 do not since they 

are connected. 6 ( , +) and 15 (-, ) are also not 

matched because of their polarity mismatch. Similarly 

20 (-, ) and 3 (+, +) are not matchable, while 20 (-, )

and 7 (-, +) are matchable. A similar procedure is 

followed for all subsequent levels. Note, for those 

residues where di=1, there is a direct match with the 

100 000 

001 011 

101 

110

111 

010

Figure 2. Diagram showing polarity
consideration with respect to s 1.

Figure 3. A three bit binary encoding for 
polarity.
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starting residue 1 (i.e. s 1) without the requirement for 

polarity matching. Hence (1, 6) and (1, 20) will have 

matches. 

Algorithm 2. Efficient search approach

Table 2. Relative distance with polarity

1 3 6 7 9 12 14 15 18 20 

 +  - - - - - - - 

 + + + + + +  - 

 2 1 2 4 5 3 2 3 1 

The matching is illustrated in Figure 4 with the help 

of concept of levels in the ‘Levels diagram’. In this 

diagram, the relative equidistant residues are 

represented at same ‘Levels’. The ith level is defined as 

Leveli = di. Thus, if the distance d of a residue (e.g. 6 

or 20) is 1, that residue is considered at Level1. The 

residues at one particular level should only be 

compared with the level immediately above it and will 

have a match if their polarities match with any of the 

residues in the level above. Hence, comparing 6 at 

Level1 with 3, 7 and 15 at Level2, we find that 6 will 

only match 3 but 6 will not match 7 and 15 due to the 

polarity mismatch. In Figure 4 below, the match 

between 6 and 3 is indicated by a solid arrow while the 

match of 20 with 7 and 15 is indicated by dotted arrow. 

4.5. Missing levels 

Table 3. Coordinates and distance of 
hydrophobic residues. 

1 3 6 9 12
X 0 -1 0 2 2 

Y 0 1 1 2 3 

 2 1 4 5 

The ES approach is valid even under a special case 

where a protein sequence may sometime result in an 

orientation that has missing levels. For example, we 

can have a condition where a level (say Level3 is 

missing).  As an illustrative example, consider a binary 

string sequence, S= [101001001001] for a protein 

sequence. Figure 5 gives the HP model of protein 

folding orientation while Table 3 gives the coordinates 

and relative distances of the hydrophobic residues. It is 

observes from Figure 5 and Table 3, the presence of 

only three TN. This is because residue 1 has one 

neighbour (namely 6), residue 3 has one neighbour 

(namely 6) and residue 9 has one neighbour (namely 

12).  

The corresponding levels diagram is shown in 

Figure 6. Unlike just one ‘stair’ obtained in Figure 4 to 

illustrate the levels of residues, the levels diagram 

shown in Figure 6 clearly shows the existence of two 

separate stairs. This is due to the missing Level3 

Residue 1 now matches with 3 directly. Also, 3 and 6 

also match due to their adjacent polarity. 9 and 12 have 

a match since they have same polarity. Residue 6 will 

12 

1

14, 18 Level4

Level3

Level5

Level2

Level1

12

9

3, 7, 15 

6, 20

Precondition: 
Fitness function, F=0; S  (= s 1, s 2, s 3 …, s n ); 

Coordinates of the hydrophobic residues of S

Post condition: Fitness value F 

1.   FOR i (2 : n) DO 

2.     IF the distance between s 1 and s i  =1 THEN, 

3.      Form  equidistant subsets based on residues  

which are equidistant from  s 1 and which 

 also have polarity match 

4.     ENDIF 

5.   ENDFOR 

6.   WHILE match exists      

7.    Count the number of distance and 

polarity matches  

8.    Decrement F for each match 

9.   ENDWHILE   

Row 2, 3: (Relative) Polarity of the residues.

Figure 4. Residue match illustrated with 
the concept of levels. 

Figure 5. HP model of the sequence 
[101001001001]

Row 1: Hydrophobic residue index obtained 
from Figure 5.

Row 4: Relative lattice distance respect to 
residue at (0, 0).
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not match with 9 because they are residues from 

different stairs. Hence the proposed ES approach is 

still valid in these special circumstances. The algorithm 

can ensure that there is no need to compare the residue 

of one stair with that of the other. 

5. Complexity analysis 

Let us consider a sequence with the total number of 

hydrophobic residues being n. The FS approach is 

given by Algorithm 1. It can be easily shown from 

Algorithm 1 that the time complexity of this approach 

is O( 2n ).
Again, the proposed ES approach is summarized by 

Algorithm 2. We can observe that in steps 1 to 5, the 

relative lattice distances and polarities are computed by 

comparing (n-1) residues with respect to s 1. In steps 6 

to 9, all matching are counted. Let us consider a worst 

case scenario when the computation time is maximum. 

This happens when there will be n matches. In this 

case from equation (1), ])[],[min(*2 SOSEM . If it 

is assumed that, E[S] =O[S] =n/2, then, M= 2 * (n/2) 
= n.

Also, assume that, there is no di = 1, i.e. no match is 

found at the initial scan. Hence, there will be a 

maximum of only )12()1( nnn  comparisons, 

so the resulting time complexity is O(n). This is a 

significant improvement when compared with the time 

complexity of O( 2n ) for FS.

6. Conclusions 

This paper presents a new efficient search (ES) 

method for fitness computation. In comparison to the 

full search approach, ES eliminates redundant 

comparisons and exploits the intrinsic relationship 

between odd-1 and even-1 grouping with respect to the 

HP model.  The time complexity of ES is O(n)

compared with O( 2n ) for FS. This improvement in 

time complexity is significant in terms of being able to 

speedily compute protein folding steps. For example, 

when using genetic algorithms for the protein folding 

problem, the fitness function is often used to test the 

fitness of a particular amino acid chain sequence. 
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Figure 6. Missing levels resulting in two 
separate isolated stairs.
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